Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAOB và ΔCOD có
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
\(\widehat{BAO}=\widehat{DCO}\)(hai góc so le trong, AB//DC)
Do đó: ΔAOB∼ΔCOD(g-g)
⇒\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)(Các cặp cạnh tương ứng tỉ lệ)(1)
Xét ΔADC có
I∈AD(gt)
O∈AC(gt)
IO//DC(gt)
Do đó: \(\dfrac{AI}{ID}=\dfrac{AO}{OC}\)(Định lí Ta lét)(2)
Xét ΔBDC có
O∈BD(gt)
K∈BC(gt)
OK//CD(gt)
Do đó: \(\dfrac{BK}{KC}=\dfrac{BO}{OD}\)(Định lí Ta Lét)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AI}{ID}=\dfrac{BK}{KC}\)
⇒\(\dfrac{AI}{BK}=\dfrac{ID}{KC}\)
Ta có: I nằm giữa A và D(gt)
nên AI+ID=AD
Ta có: K nằm giữa B và C(gt)
nên KB+KC=BC
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AI}{BK}=\dfrac{ID}{KC}=\dfrac{AI+ID}{BK+KC}=\dfrac{AD}{BC}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AI}{BK}=\dfrac{AD}{BC}\\\dfrac{ID}{KC}=\dfrac{AD}{BC}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{AI}{AD}=\dfrac{BK}{BC}\\\dfrac{ID}{AD}=\dfrac{KC}{BC}\end{matrix}\right.\)(đpcm)(6)
b) Xét ΔADC có
I∈AD(gt)
O∈AC(gt)
IO//DC(gt)
Do đó: \(\dfrac{AI}{AD}=\dfrac{IO}{DC}\)(Hệ quả của Định lí Ta lét)(4)
Xét ΔBDC có
O∈BD(gt)
K∈BC(gt)
OK//DC(gt)
Do đó: \(\dfrac{BK}{BC}=\dfrac{OK}{DC}\)(Hệ quả của Định lí Ta lét)(5)
Từ (4), (5) và (6) suy ra \(\dfrac{OI}{DC}=\dfrac{OK}{DC}\)
⇒OI=OK
mà I,O,K thẳng hàng(gt)
nên O là trung điểm của IK(đpcm)
Mình làm đề theo tính giá trị nhỏ nhất nhé (Vì bạn không ghi rõ đề), nếu có sửa đề thì bảo mình.
\(x^2-2x+y^2+4y+8\)
\(=x^2-2x.1+y^2+2y.2+4+1+3\)
\(=\left(x^2-2x.1+1^2\right)+\left(y^2+2y.2+2^2\right)+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\)
Dấu '' = '' xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy \(MinE=3\) khi: \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
a, Ta cs : \(\hept{\begin{cases}MI//QK\\MI=QK\end{cases}}\)
=> Tứ giác MIKQ là hình bình hành
Ta lại cs : MI = MQ
=> Tứ giác MIKQ là hình thoi
\(abc=1\Rightarrow c=\frac{1}{ab}\)
\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Leftrightarrow a+b+\frac{1}{ab}=\frac{1}{a}+\frac{1}{b}+ab\)
\(\Leftrightarrow\left(ab-a-b+1\right)-\left(\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)-\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)-\frac{\left(a-1\right)\left(b-1\right)}{ab}=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(1-\frac{1}{ab}\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
\(\Leftrightarrow a=1\text{ hoặc }b=1\text{ hoặc }c=1\)
Cách khác: Nhân tung \(\left(a-1\right)\left(b-1\right)\left(c-1\right)\) ra, dựa vào giả thiết để suy ra no bằng 0.
a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2)
Hình chữ nhật có kích thước là 1cm x 12cm có diện tích là 12cm2 và chu vi là (1 + 12).2 = 26 (cm) (có 26 > 15)
Hình chữ nhật kích thước 2cm x 7cm có diện tích là 14cm2 và chu vi là (2 + 7).2 = 18 (cm)
(có 18 > 15).
Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.
b) + Chu vi hình chữ nhật ABCD đã cho là (5 + 3).2 = 16 cm
Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là: 16 : 4 = 4 cm
Diện tích hình vuông này là 4.4 = 16 cm2
(Ở trên hình là ví dụ hình vuông MNPQ có cạnh là 4cm)
Vậy SHCN < SHV
+ Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
Gọi cạnh của hình chữ nhật có độ dài lần lượt là a, b.
Hình vuông có cùng chu vi với hình chữ nhật nên cạnh hình vuông là
⇒ Hình vuông có diện tích lớn nhất.
a: Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{3}\right)\)
nên DE//BC
Xét ΔADE và ΔABC có
\(\widehat{ADE}=\widehat{ABC}\)(hai góc đồng vị, DE//BC)
\(\widehat{A}\) chung
Do đó: ΔADE đồng dạng với ΔABC
b: Xét tứ giác BDEF có
DE//BF
BD//EF
Do đó: BDEF là hình bình hành
Xét ΔCEF và ΔCAB có
\(\widehat{CEF}=\widehat{CAB}\)(hai góc đồng vị, EF//AB)
\(\widehat{C}\) chung
Do đó: ΔCEF đồng dạng với ΔCAB
mà ΔEAD đồng dạng với ΔCAB
nên ΔCEF~ΔEAD
c: Xét ΔABC có DE//BC
nên \(\dfrac{DE}{BC}=\dfrac{AD}{AB}\)
=>\(\dfrac{DE}{18}=\dfrac{1}{3}\)
=>\(DE=\dfrac{1}{3}\cdot18=6\left(cm\right)\)
mà DE=BF(BDEF là hình bình hành)
nên BF=6cm
Ta có: BF+FC=BC
=>FC+6=18
=>FC=12(cm)