Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong 2018 số này không tồn tại 2 số nào bằng nhau.
Giả sử \(a_1>a_2>...>a_{2018}\)
\(\Rightarrow a_{2018}\ge2,a_{2017}\ge3,...,a_1\ge2019\)
\(\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{2018}^2}\le\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}< 1\)(mâu thuẫn với giả thiết)
=> điều giả sử không xảy ra=>đpcm
Giả sử trong 2018 số đó chẳng có số nào bằng nhau và tất cả các số đều lớn hơn 1. Thế thì:
1a21+1a22+1a23+…+1a220181a12+1a22+1a32+…+1a20182≤122+132+142+…+120192≤122+132+142+…+120192
Cơ mà:
122+132+142+…+120192122+132+142+…+120192<11.2+12.3+13.4+…+12018.2019<11.2+12.3+13.4+…+12018.2019
=1–12019<1=1–12019<1 (theo phần a)
Thế nhưng đề bài cho 1a21+1a22+1a23+…+1a22018=11a12+1a22+1a32+…+1a20182=1 (vô lý)
Vậy thể nào trong 2018 số tự nhiên đó cũng có 2 số bằng nhau
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
bạn cần gấp ko
đây là toán 6 hả bạn , mình ko nghĩ thế .