\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

=>\(\frac{b-a}{ab}=\frac{1}{a-b}\)

=>\(\left(b-a\right).\left(a-b\right)=ab\)

Ta có: b-a và a-b là 2 số đối nhau

=>(b-a).(a-b) < 0

Mà a.b > 0 (vì a;b là 2 số nguyên dương)

=>\(\left(b-a\right).\left(a-b\right)\ne ab\)

=>không tờn tại 2 số nguyên dương a;b khác nhau thỏa mãn đề bài

26 tháng 3 2019

Câu hỏi của Vũ Thị Kim Oanh - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo

12 tháng 1 2019

Làm ơn có ai làm giúp mình đi! Một bài thôi cũng được.

10 tháng 4 2019

Này m đk lm đề này ak , t bh mới đk cô cho lm . Mẹ khó vãi , mỗi câu đầu m hỏi t làm đk thôi

6 tháng 7 2020

a= 82

b2 = 172

c2 = 52

d= 32

e2 = 82

*Ý kiến riêng mong đc k

*Nếu bạn nghĩ mik làm sai thì bạn có thể tính lại

100% đúng nha bạn

Mik đã đi hỏi cô và cô bảo đúng :)

10 tháng 7 2020

cho mình hỏi tại sao lại như thế và dựa vào căn cứ gì mà bạn viết như vậy

20 tháng 4 2020

G/s: Không tồn tại 2 số nào trong số 22 số trên bằng nhau

Không mất tính tổng quát g/s: \(1\le x_1< x_2< x_3< ...< x_{22}\) với  \(x_1,x_2x_3,....x_{22}\) là số nguyên dương

Khi đó: \(x_1\ge1;x_2\ge2;x_3\ge3;...;x_{22}\ge22\)

=> \(\frac{1}{x_1}\le1;\frac{1}{x_2}\le\frac{1}{2};\frac{1}{x_3}\le\frac{1}{3};...;\frac{1}{x_{22}}\le\frac{1}{22}\)

=> \(7=\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+...+\frac{1}{x_{22}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{22}\)

\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+...+\frac{1}{15}\right)+\left(\frac{1}{15}+...+\frac{1}{22}\right)\)

\(< 1+2.\frac{1}{2}+4.\frac{1}{4}+8.\frac{1}{8}+8.\frac{1}{15}< 7\)

=> 7 < 7 vô lí 

=> Điều g/s là sai 

=> Tồn tại ít nhất 2 số bằng nhau.

21 tháng 8 2019

Em vào thống kê hỏi đáp của chị mà xem bài 1

21 tháng 8 2019

thanks

24 tháng 4 2016

Làm sao để ghi dấu phần vậy bạn