Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Số cách chọn là:
\(C^2_5\cdot C^1_4\cdot C^3_6+C^2_5\cdot C^2_4\cdot C^2_6=1700\left(cách\right)\)
b: Số cách chọn 9 viên bất kì là: \(C^9_{15}\left(cách\right)\)
Số cách chọn 9 viên ko có đủ 3 màu là:
\(C^9_9+C^9_{11}+C^9_{10}=66\left(cách\right)\)
=>Có 4939 cách
\(n\left(C\right)=C^2_6\cdot8\cdot10+C^2_8\cdot6\cdot10+C^2_{10}\cdot6\cdot8=5040\)
a: Số cách chọn là \(C^6_{16}=8008\left(cách\right)\)
b: Số cách chọn là \(C^2_4\cdot C^4_{12}=2970\left(cách\right)\)
c: SỐ cách chọn là \(C^6_9+C^6_{12}+C^6_{11}=1470\left(cách\right)\)
Giả sử trong 4 viên đó có 4 viên đỏ
=>Có \(C^4_6=15\)
=>\(n\left(\overline{A}\right)=15\)
\(n\left(\Omega\right)=C^4_{15}=1365\)
=>\(P_A=1-\dfrac{15}{1365}=\dfrac{90}{91}\)
Số cách lấy ra là:
\(C^1_3\cdot C^3_9+C^2_3\cdot C^2_9+C^3_3\cdot C^1_9=369\left(cách\right)\)
`\Omega_1=C_9 ^1=9`
`\Omega_2=C_13 ^2=78`
`@TH1:`
Gọi `A:`"Lấy từ hộp thứ nhất viên bi trắng."
`=>A=C_5 ^1=5`
`=>P(A)=5/9`
Gọi `B:`" Lấy từ hộp thứ hai `2` viên bi trắng."
`=>B=C_8 ^2=28`
`=>P(B)=5/9 . 28/78=70/351`
`@TH2:`
Gọi `C:`"Lấy từ hộp thứ nhất viên bi xanh."
`=>C=C_4 ^1=4`
`=>P(C)=4/9`
Gọi `D:`" Lấy từ hộp thứ hai `2` viên bi trắng."
`=>D=C_7 ^2=21`
`=>P(D)=4/9 . 21/78=14/117`
Ta có \(n\left( \Omega \right) = C_{12}^6 = 924\). Gọi E là biến cố: “Trong 6 viên bi đó có 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen”. Có \(C_6^3 = 20\) cách chọn 3 viên bi trắng, có \(C_4^2 = 6\) cách chọn 2 viên bi đỏ, có \(2\) cách chọn 1 viên bi đen.
Theo quy tắc nhân, ta có: \(n\left( E \right) = 20.6.2 = 240\). Vậy \(P\left( E \right) = \frac{{240}}{{924}} = \frac{{20}}{{77}}\).