Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)
Ta có: \(\hept{\begin{cases}x-my=2\\mx+2y=1\end{cases}}\) <=> \(\hept{\begin{cases}2x-2my=4\\m^2x+2my=m\end{cases}}\)
<=> \(2x+m^2x=4+m\)
<=> \(x\left(m^2+2\right)=4+m\)
<=> \(x=\frac{4+m}{m^2+2}\) => \(y=\frac{1-mx}{2}=\frac{1-m\cdot\frac{4+m}{m^2+2}}{2}=\frac{\frac{m^2+2-4m-m^2}{m^2+2}}{2}\)
=> \(y=\frac{2-4m}{2\left(m^2+2\right)}=\frac{1-2m}{m^2+2}\)
Theo bài ra, ta có: \(3x+2y-1\ge0\)
<=> \(3\cdot\frac{4+m}{m^2+2}+2\cdot\frac{1-2m}{m^2+2}-1\ge0\)
<=> \(\frac{3\left(4+m\right)+2\left(1-2m\right)-m^2-2}{m^2+2}\ge0\)
<=> \(12+3m+2-4m-m^2-2\ge0\) (vì \(m^2+2>0\))
<=> \(-m^2-m+12\ge0\)
<=> \(m^2+4m-3m-12\le0\)
<=> \(\left(m+4\right)\left(m-3\right)\le0\)
<=> \(\hept{\begin{cases}m+4\ge0\\m-3\le0\end{cases}}\) hoặc \(\hept{\begin{cases}m+4\le0\\m-3\ge0\end{cases}}\)
<=> \(\hept{\begin{cases}m\ge-4\\m\le3\end{cases}}\) hoặc \(\hept{\begin{cases}m\le-4\\m\ge3\end{cases}}\)
<=> \(-4\le m\le3\)
\(\hept{\begin{cases}x-my=2\left(1\right)\\mx-4y=m-2\end{cases}}\Leftrightarrow\hept{\begin{cases}mx-m^2y=2m\left(2\right)\\mx-4y=m-2\left(3\right)\end{cases}}\)
Lấy (2) - (3) => \(\left(4-m^2\right)y=m+2\) (*)
Để hpt có nghiệm duy nhất <=> pt(*) có nghiệm duy nhất <=> \(4-m^2\ne0\Leftrightarrow m\ne\pm2\)
\(\left(\text{*}\right)\Rightarrow y=\frac{m+2}{4-m^2}=\frac{m+2}{\left(2+m\right)\left(2-m\right)}=\frac{1}{2-m}\)
\(\left(1\right)\Rightarrow x=2+my=2+m\cdot\frac{1}{2-m}=\frac{4-2m+m}{2-m}=\frac{4-m}{2-m}\)
Ta có: \(y-x=\frac{1}{2-m}-\frac{4-m}{2-m}=\frac{1-4+m}{2-m}=\frac{m-3}{2-m}\)
Để \(y>x\Leftrightarrow y-x>0\) hay \(\frac{m-3}{2-m}>0\)
TH1: \(\hept{\begin{cases}m-3>0\\2-m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>3\\m< 2\end{cases}}\) (vô lí)
TH2: \(\hept{\begin{cases}m-3< 0\\2-m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< 3\\m>2\end{cases}}\Leftrightarrow2< m< 3\)(tm)
Vậy ...