Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)
\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(A=\frac{4}{\sqrt{x}+2}\)
b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)
=> 2cawn x + 4 = 12
=> 2.căn x = 8
=> căn x = 4
=> x = 16 (thỏa mãn)
c, có A = 4/ căn x + 2 và B = 1/căn x - 2
=> A.B = 4/x - 4
mà AB nguyên
=> 4 ⋮ x - 4
=> x - 4 thuộc Ư(4)
=> x - 4 thuộc {-1;1;-2;2;-4;4}
=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4
=> x thuộc {3;5;2;6;8}
d, giống c thôi
Đặt
\(\hept{\begin{cases}a+\sqrt{15}=x\\\frac{1}{a}-\sqrt{15}=y\end{cases}\Leftrightarrow\hept{\begin{cases}a=x-\sqrt{15}\\\frac{1}{x-\sqrt{15}}-\sqrt{15}=y\left(2\right)\end{cases}}}\)
\(\left(2\right)\Leftrightarrow1-\sqrt{15}x+15=xy-\sqrt{15}y\)
\(\Leftrightarrow16-xy=\sqrt{15}\left(x-y\right)\)
Ta nhận thấy vế trái là số nguyên còn vế phải là số vô tỷ nên để 2 vế bằng nhau thì (x - y) = 0, hay x = y
\(\Leftrightarrow a+\sqrt{15}=\frac{1}{a}-\sqrt{15}\)
\(\Leftrightarrow a^2+2\sqrt{15}a-1=0\)
\(\Leftrightarrow\left(a+\sqrt{15}\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}a=4-\sqrt{15}\\a=-4-\sqrt{15}\end{cases}}\)