Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số đó là \(\overline{abcd}\) ở đó a,b,c,d thuộc {1,2,5,7}
a, để số đó lớn hơn 4000 thì chữ số a phải bắt đầu bằng chữ số 5 hoặc 7.
vậy chữ số a có 2 cách chọn, chữ số b có 4 cách chọn
chữ số c có 4 cách chọn, d cũng có 4 cách chọn
suy ra có tất cả các chữ số ớn hơn 4000 là 2.4.4.4=128 số
b, để số đó lớn hơn 4000 thì chữ số a phải bắt đầu bằng 5 hoặc 7
mà các chữ số khác nhau
suy ra b có 3 cách chọn, c có 2 cách chọn và d có 1 cách chọn
số các chữ số cần tìm là: 2.3.2.1=12 số
Đáp án A
Ta có các TH sau
TH1: Số tự nhiên có 1 chữ số, có 5 chữ số.
TH2: Số tự nhiên có 2 chữ số, có 4.5 = 20 số.
TH3: Số tự nhiên có 3 chữ số, có 4.5 2 = 100 số.
Suy ra có tất cả 5 + 20 + 100 = 125 số thỏa mãn đề bài
Đáp án B
TH1: 4 chữ số a, b, c , d khác nhau → có C 9 4 số
TH2: Trong 4 chữ số a, b, c , d có 3 chữ số giống nhau → có 3 C 9 3 số
TH3: Trong 4 chữ số a, b, c , d có 2 chữ số giống nhau → có 2 C 9 2 số
TH4: TH1: 4 chữ số a, b, c , d giống nhau → có C 9 1 số
Vậy có tất cả C 9 4 + 3 C 9 3 + 2 C 9 2 + C 9 1 = 459 số cần tìm
Đáp án A.
Gọi n = a 1 a 2 a 3 a 4 a 5 a 6 ¯ là số tự nhiên gồm 6 chữ số đôi một khác nhau được lập thành từ các chữ số 1, 2, 3, 4, 5, 6 thỏa mãn n < 432000 .
n < 432000 ⇒ a 1 có thể nhận một trong các giá trị 1, 2, 3, 4.
* a 1 ∈ 1,2,3 ⇒ a 2 , a 3 , a 4 , a 5 , a 6 là một hoán vị của 5 chữ số thuộc tập 1,2,3,4,5,6 \ a 1 . Trường hợp này có 3.5! = 360 số.
* a 1 = 4 ⇒ a 2 có thể nhận một trong các giá trị 1, 2, 3.
+ a 2 ∈ 1,2 ⇒ a 3 , a 4 , a 5 , a 6 là một hoán vị của 4 chữ số thuộc tập 1,2,3,4,5,6 \ a 1 , a 2 . Trường hợp này có 2.4 ! = 48 số.
+ a 2 = 3 ⇒ a 3 chỉ có thể nhận giá trị bằng 1. Khi đó a 4 , a 5 , a 6 là một hoán vị của 3 chữ số thuộc tập 2,5,6 . Trường hợp này có 3 ! = 6 số.
Vậy theo quy tắc cộng có tất cả 360 + 48 + 6 = 414 số.