K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

Đáp án D

Chữ số hàng chục và hàng đơn vị lần lượt có 9 và 8 cách chọn.

Ta có số thỏa mãn

28 tháng 2 2018

Đáp án là C

Số cách chọn 2 số chẵn trong tập hợp 2 ; 4 ; 6 ; 8  là: C 4 2  cách.

Số cách chọn 2 số lẻ trong tập hợp 1 ; 3 ; 5 ; 7 ; 9  là: C 5 2  cách.

Số cách hoán vị 4 chữ số đã chọn lập thành 1 số tự nhiên là: 4! cách.

Vậy có 4 ! . C 4 2 . C 5 2  số tự nhiên thỏa mãn yêu cầu bài toán.

8 tháng 4 2018

Chọn B

Từ các chữ số trong tập {1;2;3;4;5;6;7;8;9} lập được A 9 2  số tự nhiên có hai chữ số khác nhau và đều khác 0

10 tháng 4 2017

Có bao nhiêu số tự nhiên có tính chất:

a. Là số chẵn và có hai chữ số (không nhất thiết khác nhau).

KQ: \(5\cdot9=45\) (số)

b. Là số lẻ và có hai chữ số (không nhất thiết khác nhau).

KQ: \(5\cdot9=45\) (số)

c. Là số lẻ và có hai chữ số khác nhau.

KQ: \(5\cdot8=40\) (số)

d. Là số chẵn và có hai chữ số khác nhau.

KQ: \(9+4\cdot8=41\) (số)

20 tháng 8 2021

a) TH1 : Xét số thỏa yêu cầu kể cả chữ số đầu tiên bên trái =0

Chọn 3 chữ số lẻ có C35 cách

Chọn 3 chữ số chẵn có C35 cách

Sắp xếp 6 chữ số này có 6! cách

Vậy có C35 . C35 . 6! số

TH2 : Xét số có 6 chữ số thỏa mãn mà chữ số đầu tiên bên trái =0

Chọn 3 chữ số lẻ có C35 cách

Chọn 2 chữ số chẵn có C24 cách

Sắp xếp 5 chữ số có 5! cách

Vậy có C35 . C24 . 5! số

Vậy có C35 .C35. 6! - C35.C24.5! số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chữ số chẵn 3 chữ số lẻ

 

NV
24 tháng 7 2021

a. Gọi số đó là \(\overline{ab}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)

Theo quy tắc nhân ta có: \(5.5=25\) số

b. Gọi số đó là \(\overline{abc}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)

Có: \(5.5.4=100\) số

c. Gọi số đó là \(\overline{abcd}\)

Do số chẵn nên d chẵn

- TH1: \(d=0\) (1 cách chọn d)

a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn 

\(\Rightarrow1.5.4.3=60\) số

- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn

d.

Gọi số đó là \(\overline{abcde}\)

Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)

a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách

\(\Rightarrow3.4.4.3.2=288\) số

24 tháng 7 2021

Thanks ạ

22 tháng 2 2019

Chọn C

Gọi x là số bi của hộp thứ nhất nên số bi ở hộp thứ hai là 20 - x )

Gọi a,b  lần lượt là số bi xanh hộp thứ nhất và số bi xanh ở hộp thứ hai.

Suy ra: 0 < a < x, 0 < b < 20 - x

Số cách lấy bi ở mỗi hộp là độc lập với nhau nên ta đặt:

+) Xác suất lấy một bi xanh ở hộp thứ nhất là  a x và ở hộp thứ hai là  b 20 - x

Với a, b, x là các số tự nhiên thỏa mãn 

+) Xác suất lấy được hai bi xanh 

Ta có 

Lập bảng thử từng giá trị

Khi đó, các giá trị của x là 6 hoặc 84

Ta lại có 

Do đó,  hoặc ngược lại

Vậy xác suất để lấy được hai viên bi đỏ là 

31 tháng 8 2019

Đáp án A

Giả sử số cần tìm là

Vậy số các chữ số tìm được là: A 9 5