Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: chữ số hàng đơn vị bằng 0
Chọn 4 chữ số từ 8 chữ số còn lại và hoán vị chúng: \(A_8^4\) cách
4 chữ số này tạo ra 5 khe trống, xếp 3 chữ số 1 vào 5 khe trống đó: \(C_5^3\) cách
\(\Rightarrow A_8^4.C_5^3\) số
TH2: chữ số hàng đơn vị khác 0: có 4 cách chọn
- Chọn 4 chữ số từ 8 chữ số còn lại và hoán vị chúng: \(A_8^4\) cách
Xếp 3 chữ số 1 vào 5 khe trống: \(C_5^3\) cách
- Chọn 4 chữ số từ 8 chữ số còn lại sao cho có xuất hiện số 0, cố định số 0 đứng đầu và hoán vị 3 chữ số còn lại: \(A_7^3\) cách
3 chữ số tạo ra 4 khe trống, xếp 3 chữ số 1 vào 4 khe trống: \(C_4^3\) cách
\(\Rightarrow4\left(A_8^4.C_5^3-A_7^3.C_4^3\right)\) số
Tổng cộng: \(A_8^4.C_5^3+4\left(A_8^4.C_5^3-A_7^3.C_5^3\right)\) số
Cho mình hỏi là cái chỗ "4 chữ số này tạo ra 5 khe trống" là sao thế ạ
Chữ số hàng đơn vị có 5 cách chọn
Xếp 5 chữ số còn lại sao cho không có 2 chữ số 2 nào đứng cạnh nhau có đúng 1 cách dạng 2x2y2 trong đó x;y là chữ số bất kì khác được chọn từ 8 chữ số còn lại
Số số thỏa mãn: \(5.A_8^2=...\)
Số chữ số tìm được là \(\dfrac{C^2_5\cdot5!}{3!}=200\)
Số số chia hết cho 3 là \(\dfrac{2\cdot5!}{3!}=40\)
\(\Rightarrow P=\dfrac{40}{200}=\dfrac{1}{5}\)
Chọn 5 chữ số từ 9 chữ số còn lại và hoán vị chúng: \(A_9^5\) cách
5 chữ số đã cho tạo thành 6 khe trống, xếp 3 chữ số 1 vào 6 khe trống đó: \(C_6^3\) cách
\(\Rightarrow A_9^5.C_6^3\) số (bao gồm cả trường hợp số 0 đứng đầu)
Chọn 5 chữ số, trong đó có mặt chữ số 0: \(C_8^4\) cách
Xếp 5 chữ số sao cho số 0 đứng đầu: \(4!\) cách
5 chữ số (trong đó vị trí 0 đứng đầu cố định) tạo ra 5 khe trống, xếp 3 chữ số 1 vào 5 khe trống đó: \(C_5^3\) cách
\(\Rightarrow\) Tổng cộng có: \(A_9^5.C_6^3-C_8^4.4!.C_5^3\) số thỏa mãn
Xếp số vào 9 ô trống thỏa yêu cầu đề bài:
Bước 1: Chọn 2 ô trong 8 ô (bỏ ô đầu tiên) để xếp hai chữ số 0, có cách chọn.
Bước 2: Chọn 3 ô trong 7 ô còn lại để xếp ba chữ số 2, có cách.
Bước 3: Chọn 2 ô trống trong 4 ô còn lại để xếp 2 chữ số 3, có cách chọn.
Bước 4: Hai ô còn lại xếp 2 chữ số còn lại, có 2! Cách xếp.
Theo quy tắc nhân có:
số thỏa yêu cầu bài toán.
Chọn B.
ta có : vì chữ số 4 có mặc 3 lần nên \(\Rightarrow\) bài toán tương đương với việc tìm số lượng của số có 7 chữ số được tạo bởi các con số : \(0,1,2,3,4,4,4\)
bước 1: tìm số lượng tất cả các số được tạo bởi bao gồm trường hợp chữ số 0 ở đầu .
ta có : số cách sắp xếp vị trí cho 3 chữ số 4 là : \(C^3_7=35\)
số cách sắp xếp vị trí cho 4 chữa số \(0,1,2,3\) là : \(P^4_4=4!=24\)
\(\Rightarrow\) có \(35.24=840\) (số)
bước 2: tìm số lượng số có chữ số 0 ở đầu
ta có : số cách sắp xếp vị trí cho 3 chữ số 4 ở 6 vị trí còn lại là : \(C^3_6=20\)
số cách sắp xếp vị trí cho 3 chữa số \(1,2,3\) ở 3 vị trí còn lại là : \(P^3_3=3!=6\)
\(\Rightarrow\) có : \(20.6=120\) (số)
\(===\Rightarrow\) số lượng số cần tìm bằng : \(840-120=720\) (số)