Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình tóm tắt sơ thôi rồi bạn tự làm
Có: \(|2x-1|\ge0;|1-2y|\ge0\)
=> \(|2x-1|+|1-2y|\ge0\)
TH1: \(|2x-1|+|1-2y|=0+4\)
=> \(\hept{\begin{cases}|2x-1|=0\\|1-2y|=4\end{cases}}\)hoặc \(\hept{\begin{cases}|2x-1|=4\\|1-2y|=0\end{cases}}\)
.................................... bạn tìm x;y rồi loại TH không thỏa mãn vì \(x;y\in Z\)
TH2: ................................................................
TH3: ................................................................
Tự làm nha. Mình nhátttttttt
x=2=>2+2=4 ko thao man <4
x=3=>4+0=4 ko thoa man <4
x>3 VT>4 => ko co so nao thoa man dau bai
Chú ý rằng /x/+/y/\(\ge\) /x+y/
Ta có /2x-2/+/2x-6/=/2x-2/+/6-2x/\(\ge\)/2x-2+6-2x/=/4/=4
Như vậy ko có số nguyên x nào thỏa mãn đề bài
Với bài này, ta phải chia trường hợp để phá ngoặc. VD để |x-1| = x-1 thì x-1 phải lớn hơn hoặc bằng 0, hay x lớn hơn hoặc bằng 1 là 1 trường hợp. Còn nếu x nhỏ hơn 1 thì |x-1| = -(x-1)
TH1: \(x< 1\), ta có :
\(-\left(x-1\right)+\left[-\left(x-5\right)\right]=4\)
\(1-x+5-x=4\)
\(6-2x=4\)
\(x=\frac{6-4}{2}=1\)( Không thỏa mãn x < 1 )
TH2 \(1\le x\le5;\)ta có :
\(\left(x-1\right)+\left[-\left(x-5\right)\right]=4\)
\(\Rightarrow x-1+5-x=4\)
\(4=4\)( Thỏa mãn )
Do đó với \(1\le x\le5;\) thì đẳng thức luôn thỏa mãn
TH3 : \(x>5;\)có :
\(x-1+x-5=4\)
\(2x-6=4\)
\(x=\frac{6+4}{2}=5\)(Không thỏa mãn )
Vậy \(1\le x\le5.\)
\(\frac{1}{6}\): là phân số thập phân vô hạn tuần hoàn vì mấu 6=2.3 có ước 3 khác 2 và 5;\(\frac{1}{6}\)=0,1666...=0,1(6)
\(\frac{-5}{11}\): là phân số thập phân vô hạn tuần hoàn vì mẫu 11=11 có ước 11 khác 2 và 5; \(\frac{-5}{11}\)=-0,454545....=-0,(45)
\(\frac{4}{9}\): là phân số thập phân vô hạn tuần hoàn vì mẫu 9=\(^{3^2}\)có ước 3 khác 2 và 5; \(\frac{4}{9}\)=0,4444.....=0,(4)
\(\frac{-7}{18}\): là phân số thập phân vô hạn tuần hoàn vì mẫu 18=\(2.3^2\)có ước 3 khác 2 và 5; \(\frac{-7}{18}\)=-0,388888...=-0,3(8)
Ko có số nào cả, k tớ nha
phải là \(\ge\)chứ bn..đề đúng ko z