Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow1< =n^2< =15\)
mà n là số nguyên
nên \(n\in\left\{1;-1;2;-2;3;-3\right\}\)
\(x\) + 2 + \(x\) + 8 = \(x\)
2\(x\) + 10 = \(x\)
\(x-\)2\(x\) = 10
- \(x\) = 10
Có 1 số nguyên \(x\) thỏa mãn vậy chọn A.1
(n2-3)(n2-36)=0
=> n2-3 = 0 hoặc n2-36 = 0
TH1:
n2-3 = 0
=>n2 = 3
=> Ko có giá trị của n (KTM)
TH2:
n2-36 = 0
=> n2 = 36 = 62 = (-6)2
=> n = 6 hoặc n = -6
a)\(n^2-3n^2-36=0\Leftrightarrow-2n^2-36=0\Leftrightarrow-2n^2=36\Leftrightarrow n^2=-18\)
mà \(n^2\ge0\forall n\)=> không có số nguyên nào thỏa mãn\(n^2-3n^2-36=0\)
a)\(n^2-3n^2-36< 0\Leftrightarrow-2n^2-36< 0\Leftrightarrow-2n^2< 36\Leftrightarrow n^2>-18\)
=>Vậy \(n^2-3n^2-36< 0\) với mọi số tự nhiên n
|\(x-5\)| = 7
\(\left[{}\begin{matrix}x-5=-7\\x-5=7\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2\\x=12\end{matrix}\right.\)
\(x\in\) {-2; 12}
Có hai giá trị \(x\) thỏa mãn. Vậy chọn C.2
1
a)\(\Rightarrow\orbr{\begin{cases}n+1=0\\n+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}n=-1\\n=-3\end{cases}}\)
b)\(\Rightarrow\orbr{\begin{cases}\left|n\right|+2=0\\n^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}\varphi\\n^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}\varphi\\n=1;-1\end{cases}}\)
a) (n + 1)(n + 3) = 0
\(\Rightarrow\orbr{\begin{cases}n+1=0\\n+3=0\end{cases}\Rightarrow\orbr{\begin{cases}n=-1\\n=-3\end{cases}}}\)
b) (|n| + 2)(n2 - 1) = 0
\(\Rightarrow\orbr{\begin{cases}\left|n\right|+2=0\\n^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}\left|n\right|=-2\\n^2=1\end{cases}}}\)
Vì \(\left|n\right|\ge0\)
Mà \(-2< 0\)
=> Không có giá trị thõa mãn
Vậy n2 = 1 = 12 = (-1)2
=> n = {1 ; -1}
Bài 2
25 = 5.5 = 52
36 = 6.6 = 62
49 = 7.7 = 72
Có 4 số là \(\left\{-1;0;1;2\right\}\)
{-1,0,1,2}