Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số có dạng 3 a b c : chữ số a có 9 cách chọn, chữ số b có 8 cách chọn, chữ số c có 7 cách chọn. Các số thuộc loại này có: 9.8.7 = 507 số.
Số có dạng a 3 b c : chữ số a có 8 cách chọn, chữ số b có 8 cách chọn, chữ số c có 7 cách chọn. Các số thuộc loại này có : 8.8.7 = 448 số
Số đếm có dạng a b 3 c : chữ số a có 8 cách chọn, chữ số b có 8 cách chọn, chữ số c có 7 cách chọn. Các số thuộc loại này có 8.8.7 = 448 số.
Số đếm có dạng a b c 3 : chữ số a có 8 cách chọn, chữ số b có 8 cách chọn, chữ số c có 7 cách chọn. Các số thuộc loại này có 8.8.7 = 448 số.
Vậy số số tự nhiên có bốn chữ số khác nhau trong đó có đúng một chữ số 3 là: 507 + 448 + 448 +448 = 1851 số
Nhận xét: Bài toán yêu cầu có duy nhất (đúng một) số 3, các chữ số chỉ lặp lại có đúng 1 lần vì vậy khi giải toán cần đọc kỹ yêu cầu đề toán.
Bài 14:
a) Số chứa ít nhất 1 chữ số 1 thì số đó có thể chứa 1 chữ số 1 hoặc chứa 2 chữ số 1 hoặc số đó chứa tất cả các chữ số 1
- Có 900 số có 3 chữ số
- Tìm các số có 3 chữ số đều khác chữ số 1 => số đó chỉ được tạo thành từ các chữ số 0;2;3;..;9
Chữ số hàng trăm có 8 cách chọn (trừ đi chữ số 0 và 1)
Chữ số hàng chục có 9 cách chọn (trừ đi chữ số 1 ); chữ số hàng đơn vị cũng có 9 cách chọn
=> có 8.9.9 = 648 số có 3 chữ số đều khác 1
=> Số có 3 chữ số chứa ít nhất 1 chữ số 1 = Số các số có 3 chữ số - Số các số có 3 chữ số đều khác chữ sô 1 = 900 - 648 =252 số
b) Tương tự phần a:
- Có 9000 số có 4 chữ số
- Tìm các số có 4 chữ số đều khác chữ số 1
Chữ số hàng nghìn có 8 cách chọn; chữ số hàng trăm;chục , đơn vị đều có 9 cách chọn
=> Có 8.9.9.9 = 5832 số
=> Số các số có 4 chữ số chứa ít nhất 1 chữ số 1 = Số các số có 4 chữ số - Số các số có 4 chữ số đều khác chữ số 1 = 9000 - 5832 = 3168 số
1) Co 9 cach chon chu so hang tram => Co 81 so
Co 8 cach chon chu so hang chuc => Co 72 so
Co 8 cach chon chu so hang don vi => Co 72 so
Vay co tong cong 81 + 72 + 72 = 225 so
Đặt y = x2 – 1 suy ra y2 = x4 – 2x2 + 1
Biến đổi P(x) = 2(x4 – 2x2 + 1) + 3x3 – 5x2 – 3x
= 2(x2 – 1)2 + 3x( x2 – 1) – 5x
Từ đó Q(y) = 2y2 + 3xy – 5x2
Tìm m, n sao cho m.n = - 10x2 và m + n = 3x chọn m = 5x , n = - 2x
Ta có: Q(y) = 2y2 + 3xy – 5x2
= 2y2 – 2xy + 5xy – 5x2
= 2y(y – x) + 5x(y – x)
= ( y – x)( 2y – 5x)
Do đó: P(x) = (x2 – x – 1 )(2x2 + 5x – 2).
Đặt y = x2 – 1 suy ra y2 = x4 – 2x2 + 1
Biến đổi P(x) = 2(x4 – 2x2 + 1) + 3x3 – 5x2 – 3x
= 2(x2 – 1)2 + 3x( x2 – 1) – 5x
Từ đó Q(y) = 2y2 + 3xy – 5x2
Tìm m, n sao cho m.n = - 10x2 và m + n = 3x chọn m = 5x , n = - 2x
Ta có: Q(y) = 2y2 + 3xy – 5x2
= 2y2 – 2xy + 5xy – 5x2
= 2y(y – x) + 5x(y – x)
= ( y – x)( 2y – 5x)
Do đó: P(x) = (x2 – x – 1 )(2x2 + 5x – 2).