\(m\in\left(-2018;2018\right)\) để hàm số
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2019

Lời giải:

Để $y=\sqrt{4x-12m}$ xác định trên $(0;+\infty)$ thì $4x\geq 12m$ với mọi $x\in (0;+\infty)$

$\Leftrightarrow m\leq \frac{x}{3}$ với mọi $x\in (0;+\infty)$

Hay $m\leq 0$

Với $m$ nguyên và $m\in (-2018;2018)$ thì $m\in\left\{-2017; 2016;...;0\right\}$

Do đó có 2018 giá trị nguyên của $m$ thỏa mãn đề bài

Đáp án B.

30 tháng 11 2019

\(A=[3;5)\) ; \(B=\left(-\infty;4\right)\cup\left(7;+\infty\right)\)

\(\Rightarrow A\cup B=\left(-\infty;5\right)\cup\left(7;+\infty\right)\)

\(\Rightarrow C_R\left(A\cup B\right)=\left[5;7\right]\)

Ơ không biết bạn có gõ nhầm đáp án A không nhỉ :v

\(\Rightarrow C_R\left(A\cup B\right)=\left[5;7\right]\)

1 tháng 12 2019

ồ ok ạ

NV
3 tháng 3 2019

ĐKXĐ: \(\left\{{}\begin{matrix}x-2017\ge0\\2017-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2017\\x\le2017\end{matrix}\right.\) \(\Rightarrow x=2017\)

Thay \(x=2017\) vào ta được:

\(\sqrt{2017-2017}>\sqrt{2017-2017}\Rightarrow0>0\) (vô lý \(\Rightarrow\) loại)

Vậy tập nghiệm của BPT là \(S=\varnothing\)

NV
24 tháng 10 2019

\(y=\sqrt[3]{\left(x^2+8\right)^2}-3\sqrt[3]{x^2+8}+1\)

Đặt \(\sqrt[3]{x^2+8}=t\Rightarrow t\ge2\)

Xét hàm \(f\left(t\right)=t^2-3t+1\) trên \([2;+\infty)\)

\(a=1>0;\) \(-\frac{b}{2a}=\frac{3}{2}< 2\Rightarrow f\left(t\right)\) đồng biến trên \([2;+\infty)\)

\(\Rightarrow f\left(t\right)_{min}=f\left(2\right)=-1\)

2/ \(a=-1< 0\) ; \(-\frac{b}{2a}=m-1\Rightarrow\) hàm số nghịch biến trên \(\left(m-1;+\infty\right)\)

Để hàm số nghịch biến trên \(\left(2;+\infty\right)\Leftrightarrow m-1\le2\Rightarrow m\le3\)

3/ \(-\frac{b}{2a}=2\in\left[0;4\right]\)

\(f\left(0\right)=0\) ; \(f\left(2\right)=-4\) ; \(f\left(4\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=-4\\M=0\end{matrix}\right.\)

4/ \(a=-1< 0\) ; \(-\frac{b}{2a}=\left|m-1\right|\) \(\Rightarrow\) hàm số nghịch biến trên \(\left(\left|m-1\right|;+\infty\right)\)

Đề hàm số nghịch biến trên \(\left(2;+\infty\right)\Leftrightarrow\left|m-1\right|\le2\)

\(\Leftrightarrow-2\le m-1\le2\Rightarrow-1\le m\le3\)

24 tháng 10 2019

cảm ơn bạn nhiều nhé

18 tháng 9 2020

kệ mày

19 tháng 9 2020

tôi ko trả lời được vì tôi lớp 6 thôi

16 tháng 5 2017

a) Sai

b) Sai

c) Đúng

d) Sai

2 tháng 8 2018

a) Sai;

b) Sai;

c) Đúng;

d) Sai;

16 tháng 5 2017

a) (\(-2;3\)]

b) \(\left(-15;14\right)\)

c) \(\left(0;5\right)\)

d) (\(-\infty;4\)] \(\cup\) [\(1;+\infty\))

30 tháng 7 2018

a) (−∞;3]∩(−2;+∞)=(−2;3](−∞;3]∩(−2;+∞)=(−2;3]

b) (0;12)∩[5;+∞)=(0;5)(0;12)∩[5;+∞)=(0;5)

c) (−15,7)∪(−2;14)=(−2;1)∪(3;7)(−15,7)∪(−2;14)=(−2;1)∪(3;7)

d) R∖(−1;1)=(−∞;−1]∪[1;+∞)