Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=[3;5)\) ; \(B=\left(-\infty;4\right)\cup\left(7;+\infty\right)\)
\(\Rightarrow A\cup B=\left(-\infty;5\right)\cup\left(7;+\infty\right)\)
\(\Rightarrow C_R\left(A\cup B\right)=\left[5;7\right]\)
Ơ không biết bạn có gõ nhầm đáp án A không nhỉ :v
\(\Rightarrow C_R\left(A\cup B\right)=\left[5;7\right]\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-2017\ge0\\2017-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2017\\x\le2017\end{matrix}\right.\) \(\Rightarrow x=2017\)
Thay \(x=2017\) vào ta được:
\(\sqrt{2017-2017}>\sqrt{2017-2017}\Rightarrow0>0\) (vô lý \(\Rightarrow\) loại)
Vậy tập nghiệm của BPT là \(S=\varnothing\)
\(y=\sqrt[3]{\left(x^2+8\right)^2}-3\sqrt[3]{x^2+8}+1\)
Đặt \(\sqrt[3]{x^2+8}=t\Rightarrow t\ge2\)
Xét hàm \(f\left(t\right)=t^2-3t+1\) trên \([2;+\infty)\)
\(a=1>0;\) \(-\frac{b}{2a}=\frac{3}{2}< 2\Rightarrow f\left(t\right)\) đồng biến trên \([2;+\infty)\)
\(\Rightarrow f\left(t\right)_{min}=f\left(2\right)=-1\)
2/ \(a=-1< 0\) ; \(-\frac{b}{2a}=m-1\Rightarrow\) hàm số nghịch biến trên \(\left(m-1;+\infty\right)\)
Để hàm số nghịch biến trên \(\left(2;+\infty\right)\Leftrightarrow m-1\le2\Rightarrow m\le3\)
3/ \(-\frac{b}{2a}=2\in\left[0;4\right]\)
\(f\left(0\right)=0\) ; \(f\left(2\right)=-4\) ; \(f\left(4\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}m=-4\\M=0\end{matrix}\right.\)
4/ \(a=-1< 0\) ; \(-\frac{b}{2a}=\left|m-1\right|\) \(\Rightarrow\) hàm số nghịch biến trên \(\left(\left|m-1\right|;+\infty\right)\)
Đề hàm số nghịch biến trên \(\left(2;+\infty\right)\Leftrightarrow\left|m-1\right|\le2\)
\(\Leftrightarrow-2\le m-1\le2\Rightarrow-1\le m\le3\)
a) (\(-2;3\)]
b) \(\left(-15;14\right)\)
c) \(\left(0;5\right)\)
d) (\(-\infty;4\)] \(\cup\) [\(1;+\infty\))
Lời giải:
Để $y=\sqrt{4x-12m}$ xác định trên $(0;+\infty)$ thì $4x\geq 12m$ với mọi $x\in (0;+\infty)$
$\Leftrightarrow m\leq \frac{x}{3}$ với mọi $x\in (0;+\infty)$
Hay $m\leq 0$
Với $m$ nguyên và $m\in (-2018;2018)$ thì $m\in\left\{-2017; 2016;...;0\right\}$
Do đó có 2018 giá trị nguyên của $m$ thỏa mãn đề bài
Đáp án B.