Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(x^2-2\left(m-1\right)x+m^2-3m=0\)
\(\Delta'>0\Leftrightarrow m^2-2m+1-m^2+3m>0\Leftrightarrow m>-1\)
\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
\(x^2_1+x^2_2\le8\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\le8\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-3m\right)\le8\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m\le8\)
\(\Leftrightarrow2m^2-2m-4\le0\Leftrightarrow-1\le m\le2\)
\(\Rightarrow-1< m\le2\)
Câu 1b, 2, 3 làm tương tự
Câu 4:
\(bpt>0,\forall m\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4m^2-\left(m+1\right)\left(-3m-5\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow7m^2+8m+5< 0\left(lđ,\forall m\right)\)
\(\Rightarrow m>-1\)
Câu 1:
ĐKXĐ: x>=3
\(PT\Leftrightarrow\sqrt{x-3}=2x-m\)
=>x-3=(2x-m)^2
=>4x^2-4xm+m^2=x-3
=>4x^2-x(4m-1)+m^2+3=0
Δ=(4m-1)^2-4*4*(m^2+3)
=16m^2-8m+1-16m^2-48
=-8m-47
Để phương trình có nghiệm thì -8m-47>=0
=>m<=-47/8
a: TH1: m=2
Pt sẽ là 3x-4=0
=>x=4/3(loại)
TH2: m<>2
\(\text{Δ}=\left(5-m\right)^2-4\left(m-2\right)\left(m-6\right)\)
\(=m^2-10m+25-4\left(m^2-8m+12\right)\)
\(=m^2-10m+25-4m^2+32m-48\)
\(=-3m^2+22m-23\)
Để phương trình có hai nghiệm phân biệt thì -3m^2+22m-23>0
=>\(\dfrac{11-2\sqrt{13}}{3}< x< \dfrac{11+2\sqrt{13}}{3}\)
a: |x1-x2|=2
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)
\(\Leftrightarrow\left(\dfrac{m-5}{m-2}\right)^2-4\cdot\dfrac{m-6}{m-2}=4\)
\(\Leftrightarrow\dfrac{\left(m-5\right)^2-4\left(m^2-8m+12\right)}{\left(m-2\right)^2}=4\)
=>\(m^2-10m+25-4m^2+32m-48=4m^2-16m+16\)
=>-7m^2+38m-39=0
hay \(m=\dfrac{19\pm2\sqrt{22}}{7}\)
c: TH1: x1<x2<0<1
=>x1+x2<0 và x1x2>0
=>(m-5)/(m-2)<0 và (m-6)/(m-2)>0
\(\Leftrightarrow\left\{{}\begin{matrix}2< m< 5\\\left[{}\begin{matrix}m>6\\m< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
TH2: 0<x1<x2<1
=>x1x2<1 và 0<x1+x2<2
=>0<m-5/m-2<2 và m-6/m-2<1
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m-5-2m+4}{m-2}< 0\\\dfrac{m-6-m+2}{m-2}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m+1}{m-2}>0\\\dfrac{-4}{m-2}< 0\end{matrix}\right.\)
=>m>2
\(x^3-x^2+2mx-2m=0\)
\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)
Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)
a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\)
Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)
Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
b.
Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)
\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn
Em coi lại đề bài
\(x^3+mx=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+m=0\left(1\right)\end{matrix}\right.\)
Để pt có 3 nghiệm phân biệt thì (1) có 2 nghiệm phân biệt \(x_2;x_3\ne0\)
\(\Rightarrow\Delta_{\left(1\right)}=-4m>0\\ \Rightarrow m< 0\)
\(f\left(x\right)=x^2+m\\ \Rightarrow f\left(0\right)=m\ne0\)
Theo Vi-ét: \(\left\{{}\begin{matrix}x_2+x_3=0\\x_2x_3=m\end{matrix}\right.\)
\(\Rightarrow x_1^2+x_2^2+x_3^2=\left(x_2+x_3\right)^2-4x_2x_3=-4m=2020\\ \Rightarrow m=-505\)