\(\left(a,b\right)\) biết rằng \(\overline{2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Điều kiện: \(0\le a,b\le9;a,b\in N\) (vì a và b là chữ số)

Vì \(\overline{2a1b9}\)có chữ số tận cùng là 9, với \(2019\) là số mũ lẻ, nên \(\overline{2a1b9}^{2019}\) có chữ số tận cùng là 9.

\(\overline{2a1b9}^{2019}\div13\) dư 1 \(\Leftrightarrow\overline{2a1b9}^{2019}-1\) chia hết cho 13 \(\Leftrightarrow\overline{2a1b8}^{2019}\) chia hết cho 13 (vì \(\overline{2a1b9}^{2019}\) có chữ số tận cùng là 9 rồi trừ đi 1 là có chữ số tận cùng là 8)

Vì 13 là số nguyên tố cho nên để \(\overline{2a1b8}^{2019}\) chia hết cho 13 thì \(\overline{2a1b8}\) phải chia hết cho 13.

Ta có: \(\overline{2a1b8}=20108+1000a+10b=13\cdot\left(1546+76a+\frac{12a+10b+10}{13}\right)\)

Từ đó, để \(\overline{2a1b8}\) chia hết cho 13 thì \(1546+76a+\frac{12a+10b+10}{13}\) phải là số tự nhiên.

\(\Leftrightarrow\frac{12a+10b+10}{13}\in N\) (vì \(1546+76a\in N\))

\(\Leftrightarrow12a+10b+10\) chia hết cho 13 \(\Leftrightarrow2\left(6a+5b+5\right)\)chia hết cho 13

\(\Leftrightarrow6a+5b+5\) chia hết cho 13 (vì 2 không chia hết cho 13)

\(\Leftrightarrow6a+5b+5\in B\left(13\right)=\left\{0;13;26;...\right\}\)

Ta có: \(0\le a,b\le9\Rightarrow5\le6a+5b+5\le104\) (từ điều kiện đề bài có sẵn)

Từ đó, ta có: \(6a+5b+5\in\left\{13;26;39;52;65;78;91;104\right\}\)

\(\Rightarrow6a+5b\in\left\{8;21;34;47;60;73;86;99\right\}\)

Ta có: \(6a\) là số chẵn, \(5b\) là số chẵn hoặc lẻ (phụ thuộc vào \(b\) chẵn hoặc lẻ)

\(\Rightarrow6a+5b\) chẵn khi \(b\) chẵn, \(6a+5b\) lẻ khi \(b\) lẻ

* Đối với các số chẵn \(8;34;60;86\), ta có:

Trường hợp \(b=0\), ta thấy chỉ có số \(60\) chia hết cho 6 là \(a=10\)(không tmđk)

Trường hợp \(b=2\), trừ tất cả các số đi 10, chỉ có số \(24\) chia hết cho 6 là \(a=4\)(tmđk)

Trường hợp \(b=4\), trừ tất cả các số đi 20, chỉ có số \(66\) chia hết cho 6 là \(a=11\) (không tmđk)

Trường hợp \(b=6\), trừ tất cả các số đi 30, chỉ có số \(30\) chia hết cho 6 là \(a=5\) (tmđk)

Trường hợp \(b=8\), trừ tất cả các số đi 40, không có số nào chia hết cho 6.

Từ đó, ta được các cặp \(\left(a,b\right)=\left(4;2\right),\left(a,b\right)=\left(5;6\right)\).

* Đối với các số lẻ \(21;47;73;99\), ta có:

Trường hợp ​\(b=1\)​, trừ tất cả các số đi 5, chỉ có số ​\(42\)​ chia hết cho 6 là \(a=7\) (tmđk)

Trường hợp ​\(b=3\), trừ tất cả các số đi 15, chỉ có các số ​\(6\) và \(84\)​ chia hết cho 6 là \(a=1\) (tmđk), \(a=14\) (không tmđk)

Trường hợp ​\(b=5\), trừ tất cả các số đi 25, chỉ có số ​\(48\)​ chia hết cho 6 là \(a=8\) (tmđk)

Trường hợp ​\(b=7\), trừ tất cả các số đi 35, chỉ có số ​\(12\) chia hết cho 6 là \(a=2\) (tmđk)

Trường hợp ​\(b=9\), trừ tất cả các số đi 45, chỉ có số ​\(54\) chia hết cho 6 là \(a=9\) (tmđk)

Từ đó, ta có các cặp \(\left(a,b\right)=\left(7;1\right),\left(a,b\right)=\left(1;3\right),\left(a,b\right)=\left(8;5\right),\left(a,b\right)=\left(2;7\right),\left(a,b\right)=\left(9;9\right)\).

Vậy có 7 cặp chữ số \(\left(a,b\right)\) sao cho \(\overline{2a1b9}^{2019}\div13\) dư 1 là \(\left(1;3\right),\left(2;7\right),\left(4;2\right),\left(5;6\right),\left(7;1\right),\left(8;5\right),\left(9;9\right)\).

18 tháng 3 2020

P/S: Phần đầu tôi trình báy sai đấy, sửa lại:

Điều kiện \(0\le a,b\le9;a,b\in N\) (vì a và b là chữ số)

\(\overline{2a1b9}^{2019}\div13\) dư 1 \(\Leftrightarrow\overline{2a1b9}\div13\) dư 1 (vì 13 là số nguyên tố)

\(\Leftrightarrow\overline{2a1b9}-1⋮13\Leftrightarrow\overline{2a1b8}⋮13\).

Nhưng, cho đến nay, \(\overline{2a1b9}^{2019}\div13\)dư 1 \(\Leftrightarrow\overline{2a1b9}\div13\) dư 1 là không hẳn đúng, và sẽ ra thiếu cặp chữ số. Kết quả thực sự là phải nhiều hơn 7 cặp chữ số (a,b).

27 tháng 7 2018

a) \(1:\overline{0,abc}=a+b+c\)

\(\Rightarrow\dfrac{1}{\overline{abc}}=\dfrac{a+b+c}{1000}\)

\(\Rightarrow\overline{abc}\left(a+b+c\right)=1000\)

Mà 0 < a + b + c < 28 nên a + b + c \(\in\) {1; 2; 4; 5; 8; 10; 20; 25}. Mà \(\overline{abc}\ge100\) nên a + b + c \(\le\) 10, do đó a + b + c \(\in\) {1; 2; 4; 5; 8; 10}. Thử từng trường hợp ta được đáp án đúng là a + b + c = 8 và \(\overline{abc}\) = 125

30 tháng 7 2018

chép mạng hả

16 tháng 1 2019

ta để dàng thấy được : \(a;b\) là 2 số lẽ khác \(5\)

\(\overline{\left(a+1\right)b}\) là số có 2 chữ số \(\Rightarrow\) \(a;b\) khác 9

\(\Rightarrow a;b\in\left\{1,3,7\right\}\)

\(\Rightarrow\left(a;b\right)=\left(1;1\right);\left(1;3\right)\left(1;7\right);\left(3;1\right);\left(3;3\right);\left(3;7\right);\left(7;1\right);\left(7;3\right)\left(7;7\right)\)

thay lại lần lược ta thấy \(\left(1;1\right);\left(1;3\right)\left(3;1\right);\left(3,7\right);\left(7;3\right)\) thõa mãn bài toán

vậy ...

15 tháng 1 2019

dễ thấy a;b=0 => loại
với a;b đồng thời bằng 1 => loại
=> a>=1 với
a=1 => (a+1)b= 2b là số nguyên tố => b=1
khi đó ab=1 => loại
=> a>1
*với a=2 =>ab=2b là số nguyên tố => b=1
=> (b+1)a=2a là số nguyên tố => a=1 (vô lý)
*với a>2 => a lẻ => a+1 chẵn => (a+1).b chia hết cho 2 và >2 => loại
vậy ko có số tự nhiên a;b thỏa mãn

22 tháng 11 2016

số nguyên tố nhỏ nhất : 2

số lớn nhất có 1 chữ số : 9

số nguyên số chia hết cho 5 ( có 1 chữ số ) : 5

số nhỏ nhất chia hết cho 5 ( có 1 chữ số ) : 5

abcd = 2955

22 tháng 11 2016

Số nguyên tố nhỏ nhất là 2 => a = 2

Số lớn nhất có 1 chữ số là 9 => b = 9

Số nguyên tố chia hết cho 5 là 5 => c = 5

Số nhỏ nhất chia hết cho 5 là 0 => d = 0

abcd = 2950. Năm đó là năm 2950

Mình thấy nó vô lí thế nào ấy

30 tháng 5 2020

Ta có : \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)

\(\Rightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

\(\Rightarrow\frac{9a}{a+b}=\frac{9b}{b+c}\Rightarrow\frac{a}{a+b}=\frac{b}{b+c}\)

=> a(b + c) = b(a + b)

=> ab + ac = ab + bb

=> ac = bb

=> \(\frac{a}{b}=\frac{b}{c}\left(\text{đpcm}\right)\)

AH
Akai Haruma
Giáo viên
20 tháng 5 2020

Bài 2 sau khi đã sửa đề thành $5x=7z$:

Ta có:
\(\frac{x}{y}=\frac{3}{2}\Leftrightarrow \frac{x}{3}=\frac{y}{2}\Leftrightarrow \frac{x}{21}=\frac{y}{14}(1)\)

\(5x=7z\Leftrightarrow \frac{x}{7}=\frac{z}{5}\Leftrightarrow \frac{x}{21}=\frac{z}{15}(2)\)

Từ $(1);(2)\Rightarrow \frac{x}{21}=\frac{y}{14}=\frac{z}{15}$ và đặt bằng $k$

$\Rightarrow x=21k; y=14k; z=15k$

Khi đó:

$x-2y+z=32$

$\Leftrightarrow 21k-28k+15k=32\Leftrightarrow 8k=32\Rightarrow k=4$

$\Rightarrow x=21k=84; y=14k=56; z=15k=60$

AH
Akai Haruma
Giáo viên
19 tháng 5 2020

Bài 2: $5z=7z$ hình như sai, bạn coi lại đề.

Bài 3:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Leftrightarrow \frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

\(\Leftrightarrow \frac{9a+(a+b)}{a+b}=\frac{9b+(b+c)}{b+c}\Leftrightarrow \frac{9a}{a+b}+1=\frac{9b}{b+c}+1\)

\(\Leftrightarrow \frac{a}{a+b}=\frac{b}{b+c}\Rightarrow ab+ac=ab+b^2\)

\(\Leftrightarrow ac=b^2\Rightarrow \frac{a}{b}=\frac{b}{c}\) (đpcm)

3 tháng 11 2019

Với số lượng chữ b ở tử và mẫu như nhau, ta có:

(abbb...b) / (bbb...bc)

= (a/c) . (bb...b / bb...b)

= (a/c) . 1

= a/c (đpcm)

Xin phép được giải bài mà chính bản thân hỏi :v

Có \(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}\Rightarrow\frac{a}{c}=\frac{10a+b}{10b+c}=\frac{9a+b}{10b}=\frac{9ak+bk}{10bk}\)          \(\left(k=11...1\right)\)(n chữ số 1)

                       \(\Rightarrow\frac{a}{c}=\frac{9a\cdot11...1+b\cdot11...1}{10b\cdot11...1}=\frac{99...9\cdot a+b\cdot11...1}{b\cdot11...10}\)       (n chữ số 9)

                                                                                \(=\frac{\left(100..0-1\right)\cdot a+\overline{bb...b}}{\overline{bb...b0}}\)   (n chữ số 0) (n chữ số b)

                                                                                \(=\frac{\overline{a00...0}-a+\overline{bb...0}}{\overline{bb...b0}}\)

                                                                                \(=\frac{\overline{a00...0}+\overline{bb...b}}{\overline{bb...b0}+c}=\frac{\overline{abb...b}}{\overline{bb...bc}}\)    (đpcm)