K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2018

ABCDE
ABCDE

cặp ghế A:
chọn 1 nam và 1 nữ : 5C1. 5C1 = 52 và sắp xếp vị trí 2 bạn này : 2!

=> 5^2.2!
Tương tự :
cặp B: 4^2.2!
cặp C: 3^2. 2!
cặp D: 2^2.2!
cặp E: 2!
vậy số cách sắp xếp là :5^2.2!4^2,2!3^2. 2!2^2.2!2! =2^5 . (5!)^2

30 tháng 9 2017

Chọn C

Số phần tử của không gian mẫu: .

Gọi biến cố : “Xếp 10 học sinh vào 10 ghế sao cho mỗi học sinh nam đều ngồi đối diện một học sinh nữ”.

Giả sử đánh vị trí ngồi như bảng sau:

Cách 1: Xếp vị trí A 1  có 10 cách. Mỗi cách xếp vị trí  A 1  sẽ có 5 cách xếp vị trí B 1 .

Mỗi cách xếp vị trí  A 1 ,  B 1  có 8 cách xếp vị trí , tương ứng sẽ có 4 cách xếp vị trí B 2 .

Cứ làm như vậy thì số cách xếp thỏa mãn biến cố  là: 

Cách 2: Đánh số cặp ghế đối diện nhau là C1, C2, C3, C4, C5

Xếp  bạn nam vào 5 cặp ghế có 5! cách.

Ở mỗi cặp ghế, ta có 2 cách xếp một cặp nam, nữ ngồi đối diện.

Số phần tử của A là: 

20 tháng 6 2019

Chọn D

Cách 1. Xếp ngẫu nhiên 10 học sinh vào hai dãy ghế có  cách.

Đánh số ghế lần lượt từ 1 đến 10.

 

Xếp học sinh thỏa mãn bài toán xảy ra hai khả năng sau:

Khả năng 1: Nam ngồi vị trí lẻ, nữ ngồi vị trí chẵn có 5!.5! cách.

Khả năng 2: Nam ngồi vị trí chẵn, nữ ngồi vị trí lẻ có 5!.5! cách.

Vậy có tất cả 2. ( 5 ! ) 2  cách.

Xác suất cần tìm bằng 

Cách 2: Xếp ngẫu nhiên 10 học sinh vào hai dãy ghế, có 10! cách xếp.

Ta chia hai dãy ghế thành 5 cặp ghế đối diện:

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 1 có   cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 2 có  cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 3 có  cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 4 có  cách;

+ Chọn 1 nam và 1 nữ xếp vào cặp ghế 5 có 1 cách.

Vậy có tất cả  cách xếp thỏa mãn.

Xác suất cần tìm bằng  

19 tháng 12 2022

giúp mk vs ạ

 

19 tháng 12 2022

Vì các bạn nữ luôn ngồi gần nhau nên ta coi 4 bạn nữ là x 
=> Có 4! cách xếp x

số cách xếp 5 học sinh nam và x là : 
6!.4! = 17280 (cách)

9 tháng 12 2019



Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:  a. Họ ngồi chỗ nào cũng được?  b. Nam ngồi kề nhau, nữ ngồi kề nhau?  c. Nam và nữ ngồi xen kẻ nhau?  d. Có 2 người luôn ngồi cạch nhau?Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách: a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa b. Vào 5 ghế chung quanh...
Đọc tiếp

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:

  a. Họ ngồi chỗ nào cũng được?
  b. Nam ngồi kề nhau, nữ ngồi kề nhau?
  c. Nam và nữ ngồi xen kẻ nhau?
  d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
 a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
 b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này 
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông

0
15 tháng 7 2019

a) Xếp 6 nam vào 6 ghế cạnh nhau. Có 6! cách.

Giữa các bạn nam có 5 khoảng trống cùng hai đầu dãy, nên có 7 chỗ có thể đặt ghế cho nữ.

Bây giờ chọn 4 trong 7 vị trí để đặt ghế. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Xếp nữ vào 4 ghế đó. Có 4! cách.

Vậy có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách xếp mà không có hai bạn nữ nào ngồi cạnh nhau.

b) Xếp 6 ghế quanh bàn tròn rồi xếp nam vào ngồi. Có 5! cách.

Giữa hai nam có khoảng trống. Xếp 4 nữ vào 4 trong 6 khoảng trống đó. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Theo quy tắc nhân, có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

28 tháng 6 2018

18 tháng 5 2017

Tổ hợp - xác suất

NV
9 tháng 1 2022

Xếp 6 học sinh trường A vào 1 dãy ghế: 6! cách

Xếp 6 học sinh trường B vào dãy còn lại: 6! cách

Lúc này hai học sinh đối diện luôn khác trường, có 6 cặp như vậy, mỗi cặp có 2 cách hoán vị nên có \(2^6\) cách hoán vị 

Tổng cộng: \(6!.6!.2^6\) cách xếp thỏa mãn