Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}AC=AH\left(GT\right)\\AB.chung\\\widehat{CAB}=\widehat{BAH}\left(=90^0\right)\end{matrix}\right.\Rightarrow\Delta ACB=\Delta AHB\left(c.g.c\right)\)
\(b,\left\{{}\begin{matrix}\widehat{ACB}=\widehat{CBK}\left(so.le.trong\right)\\\widehat{ABC}=\widehat{BCK}\left(so.le.trong\right)\\BC.chung\end{matrix}\right.\Rightarrow\Delta ABC=\Delta KCB\left(g.c.g\right)\Rightarrow AC=BK\left(2.cạnh.tương.ứng\right)\)
\(c,CH=AC+AH=2AC=2AB=BM\\ \left\{{}\begin{matrix}CK//AB\\AB\perp AC\end{matrix}\right.\Rightarrow CK\perp AC\Rightarrow\widehat{ACK}=90^0\\ \left\{{}\begin{matrix}BK//AC\\AC\perp AB\end{matrix}\right.\Rightarrow KB\perp AB\Rightarrow\widehat{ABK}=90^0\\ \left\{{}\begin{matrix}\widehat{ACK}=\widehat{ABK}\left(=90^0\right)\\CH=BM\left(cm.trên\right)\\AC=BK\left(cm.trên\right)\end{matrix}\right.\Rightarrow\Delta CHK=\Delta BMK\left(c.g.c\right)\)
\(d,\Delta CHK=\Delta BMK\left(cm.trên\right)\\ \Rightarrow\widehat{CKH}=\widehat{BKM}\Rightarrow\widehat{CKH}+\widehat{HKB}=\widehat{BKM}+\widehat{HKB}\\ \Rightarrow\widehat{CKB}=\widehat{HKM}\\ \Rightarrow\widehat{BAC}=\widehat{HKM}\left(\Delta ABC=\Delta KCB.nên.\widehat{CKB}=\widehat{BAC}\right)\\ \Rightarrow\widehat{HKM}=90^0\Rightarrow HK\perp KM\)
Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99
Lời giải:
Cách 1:
B = 1 + (2 + 3 + 4 + ... + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950
Lời bình: Tổng B gồm 99 số hạng, nếu ta chia các số hạng đó thành cặp (mỗi cặp có 2 số hạng thì được 49 cặp và dư 1 số hạng, cặp thứ 49 thì gồm 2 số hạng nào? Số hạng dư là bao nhiêu?), đến đây học sinh sẽ bị vướng mắc.
Ta có thể tính tổng B theo cách khác như sau:
Cách 2:
Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999
Lời giải:
Cách 1:
Từ 1 đến 1000 có 500 số chẵn và 500 số lẻ nên tổng trên có 500 số lẻ. Áp dụng các bài trên ta có C = (1 + 999) + (3 + 997) + ... + (499 + 501) = 1000.250 = 250.000 (Tổng trên có 250 cặp số)
Cách 2: Ta thấy:
1= 2.1 - 1
3 = 2.2 - 1
5 = 2.3 - 1
...
999 = 2.500 - 1
Quan sát vế phải, thừa số thứ 2 theo thứ tự từ trên xuống dưới ta có thể xác định được số các số hạng của dãy số C là 500 số hạng.
Áp dụng cách 2 của bài trên ta có:
Bài 3. Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
Nhận xét: Các số hạng của tổng D đều là các số chẵn, áp dụng cách làm của bài tập 3 để tìm số các số hạng của tổng D như sau:
Ta thấy:
10 = 2.4 + 2
12 = 2.5 + 2
14 = 2.6 + 2
...
998 = 2 .498 + 2
Tương tự bài trên: từ 4 đến 498 có 495 số nên ta có số các số hạng của D là 495, mặt khác ta lại thấy: 495 = (998 - 10)/2 + 1 hay số các số hạng = (số hạng đầu - số hạng cuối) : khoảng cách rồi cộng thêm 1
Khi đó ta có:
2D = 1008.495 → D = 504.495 = 249480
Thực chất D = (998 + 10).495 / 2
Qua các ví dụ trên, ta rút ra một cách tổng quát như sau: Cho dãy số cách đều u1, u2, u3, ... un (*), khoảng cách giữa hai số hạng liên tiếp của dãy là d.
Khi đó số các số hạng của dãy (*) là:
Tổng các số hạng của dãy (*) là:
Đặc biệt từ công thức (1) ta có thể tính được số hạng thứ n của dãy (*) là: un = u1 + (n - 1)d
Hoặc khi u1 = d = 1 thì
tick nha
em mới học lớp 6