Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chiều cao nhỏ nhất của ba chồng sách là:
BCNN(15;6;8)=120(mm)
Gọi a là số sách cần tìm.
Ta có : \(a⋮15,a⋮6,a⋮8\), mà a nhỏ nhất.Nên a thuộc BCNN (15,6,8) = 3.5.23 = 120
Vậy số sách cần tìm là 120 trang
Giải:
Gọi chiều cao của ba chồng sách là: a ( a > 0mm )
Theo bài ra ta có:
\(a⋮15\)
\(a⋮6\)
\(a⋮8\)
\(\Rightarrow a⋮BC\left(15;6;8\right)\)
Vì a là số nhỏ nhất nên \(a=BCNN\left(15;6;8\right)\)
Ta có:
15 = 3.5
6 = 2.3
8= 2.2.2
\(\Rightarrow a=BCNN\left(15;6;8\right)=3.5.2.2.2=120\)
Vậy chiều cao nhỏ nhất của ba chồng đó là 120mm
Gọi chiều cao của ba chồng sách là x
Theo đề bài ta có x ⋮ 15; x ⋮ 6; x ⋮ 8 nên x ∈ BC(15;6;8)
Mà x nhỏ nhất => x = BCNN(15;6;8)
Ta có 15 = 3.5; 6 = 2.3; 8 = 2 3
=>BCNN(15;6;8) = 2 3 . 3 . 5 = 120
Vậy chiều cao nhỏ nhất của ba chồng sách là 120mm
Giải thích các bước giải:
Người ta xếp sao cho 3 chồng sách bằng nhau
Nên chiều cao chồng sách chính là bội chung của 15 ; 6; 8
MÀ chiều cao nhỏ nhất => Chiều cao chính là BCNN (15;6;8)
Ta có: 15= 3.5 6=2.3 8=2^3
=> BCNN(15;6;8)= 2^3 .3 .5= 120 (mm)
Vậy chiều cao nhỏ nhất là 120 mm
Giả sử chiều cao nhỏ nhất của mỗi chồng là a (cm)
Ta có:
a = BCNN(7, 8, 12) = 23.3.7=168{2^3}.3.7 = 16823.3.7=168 (cm)
Vậy chiều cao nhỏ nhất của chồng hộp là 168cm.