K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2016

Ủng hộ

25 tháng 9 2016

ủng hộ

16 tháng 11 2016

Các bạn vào đây để làm bài nhé Vòng 1 | Học trực tuyến

16 tháng 11 2016

tl ở đâu thím ei

*TỔ CHỨC CUỘC THI TOÁN NÂNG CAO CẤP THCS (7-8-9)  (tiếp theo)Kì thi đã tổ chức một lần và hôm nay mình xin tổ chức tiếp dành riêng cho khối 7,8 .Bạn nào chưa xem thì có thể xem lại và làm tại đây--------------------------------------------------------------------------------------Trước khi vào bài,mình có một số gợi ý nho nhỏ để các bạn có hướng làm bài tốt! Chúng ta có thể sử dụng nguyên lí Dirichlet...
Đọc tiếp

*TỔ CHỨC CUỘC THI TOÁN NÂNG CAO CẤP THCS (7-8-9)  (tiếp theo)

Kì thi đã tổ chức một lần và hôm nay mình xin tổ chức tiếp dành riêng cho khối 7,8 .

Bạn nào chưa xem thì có thể xem lại và làm tại đây

--------------------------------------------------------------------------------------

Trước khi vào bài,mình có một số gợi ý nho nhỏ để các bạn có hướng làm bài tốt!

 Chúng ta có thể sử dụng nguyên lí Dirichlet để c/m những bài toán BĐT:

*Nguyên lí Dirichlet:

    +Cho m con thỏ vào n chiếc lồng (m>n) thì có ít nhất một chiếc lồng chứa 2 con thỏ

    +Trong 3 số thực bất kì a,b,c tồn tại ít nhất 2 số cùng không âm hoặc cùng không dương

    +Trong bài toán nếu dự đoán đẳng thức xảy ra khi a=b=c=k thì khi đó tồn tại ít nhất 2 số có tích không âm: Vd: (a-k)(b-k) không âm

--------------------------------------------------------------------------------------------

Bắt đầu cuộc thi nào!

Bài toán 1: Cho các số thực dương a, b, c.CMR: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Bài toán 2: Cho các số thực dương a, b, c.CMR: \(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\ge9\left(ab+bc+ca\right)\)

6
7 tháng 12 2018

Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bb và cc.

Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a

Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1

Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)

⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)

Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1. 

7 tháng 12 2018

Đặng Ly sao bạn biết đc luôn tồn tại hai số cùng lớn hơn hay  bằng 11 hoặc nhỏ hơn hay bằng 11?Nếu thế thì sai r bạn ey! Mà bạn đang làm bài nào thế?

5 tháng 9 2017

cảm ơn bạn đã thông báo còn cuộc thi dành cho giải vật lý qua mạng bao giờ mới tổ chức vậy bạn hum

OMG

Lại tổ chức tiếp à

22 tháng 12 2018

Số kg đường cần thiết là 9x2,5/4= 5,625 (kg)

22 tháng 12 2018

cái mink cần là làm theo cách giải cấp 2