Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Chọn 4 quyển sách khác nhau đủ 3 loại, có các TH sau:
TH1: 1 toán, 1 lý, 2 hóa: $A_1=C^1_6.C^1_7.C^2_8$ cách
TH2: 2 toán, 1 lý, 1 hóa: $A_2=C^2_6.C^1_7.C^1_8$ cách
TH3: 1 toán, 2 lý, 1 hóa: $A_3=C^1_6.C^2_7.C^1_8$ cách
Tổng số cách: $A_1+A_2+A_3=3024$ cách
Ta xếp các cuốn sách cùng một bộ môn thành một nhóm
Trước hết ta xếp 3 nhóm lên kệ sách chúng ta có: 3!=6 cách xếp
Với mỗi cách xếp 3 nhóm đó lên kệ ta có 5! cách hoán vị các cuốn sách Toán, 6! cách hoán vị các cuốn sách Lý và 8! cách hoán vị các cuốn sách Hóa
Vậy theo quy tắc nhân có tất cả: 6.5!.6!.8 cách xếp
Chọn đáp án B
Ta xếp các cuốn sách cùng một bộ môn thành một nhóm
Trước hết ta xếp 3 nhóm lên kệ sách chúng ta có: 3!=6 cách xếp
Với mỗi cách xếp 3 nhóm đó lên kệ ta có 5! cách hoán vị các cuốn sách Toán, 6! cách hoán vị các cuốn sách Lý và 8! cách hoán vị các cuốn sách Hóa
Vậy theo quy tắc nhân có tất cả: 6.5!.6!.8! cách xếp
Chọn đáp án B.
Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:
A.39600
B. 720
C.30888
D. 38880
Nghĩa là loại đi trường hợp xếp mà có sự xuất hiện của bộ Lý-Hóa-Lý nằm đúng như vầy, sát nhau đồng thời Hóa kẹp giữa 2 Lý
Bước 1: Do đề bài cho 4 quyển sách Toán đứng cạnh nhau nên ta sẽ coi như “buộc” các quyển sách Toán lại với nhau thì số cách xếp cho “buộc” Toán này là 4! cách.
Bước 2: Tương tự ta cũng “buộc” 3 quyển sách Lý lại với nhau, thì số cách xếp cho “buộc” Lý này là 3! cách.
Bước 3: Lúc này ta sẽ đi xếp vị trí cho 7 phần tử trong đó có:
+ 1 “buộc” Toán.
+ 1 “buộc” Lý.
+ 5 quyển Hóa.
Thì sẽ có 7! cách xếp.
Vậy theo quy tắc nhân ta có 7!4!3!=725760 cách xếp.
Chọn C.
a) Số cách xếp 5 quyển Toán nằm cạnh nhau là: `5! . 10!`
b)
Xếp 5 quyển sách Toán, ta có `5!` cách xếp, mỗi cách xếp đều cho tar 6 khe trống.
`->` Cần xếp 3 quyển Hóa vào 6 khe trống đó.
`->` Số cách xếp là: `5!.`\(A_6^3\)`=14400`.
Để sắp xếp số sách đó lên kệ và thỏa mãn đầu bài ta cần làm hai công việc sau:
Đầu tiên; đặt 3 nhóm sách ( toán; văn; anh) lên kệ có 3!=6 cách.
Sau đó; trong mỗi nhóm ta có thể thay đổi cách xếp các quyển sách với nhau:
Nhóm toán có 4!=24 cách.
Nhóm văn có 2!=2 cách.
Nhóm anh có 6!=720 cách.
Theo quy tắc nhân có : 6.24.2.720=207360 cách.
Chọn B.
Số cách chọn 3 quyển sách văn là \(C^3_4=4\).
Số cách chọn 3 quyển sách anh là \(C^3_5=10\).
a, Số cách sắp xếp vào 1 kệ dài là \(9!.4.10=14515200\) cách.
b, Coi số sách mỗi loại là một phần tử.
Số cách sắp xếp thỏa mãn yêu cầu bài toán là \(3!.4.10=240\) cách.