Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sao lại có cả trên 2 vậy
nhân vế trái với 2 là tạo ra cả 3 hàng đẳng thức rồi mà chắc bạn nhầm đâu đó rồi
(x+y+z)2-x2-y2-z2= 2(xy+yz+zx)
<=>(x+y+z)2-x2-y2-z2-2(xy+yz+zx)=0
<=>(x+y+z)2-x2-y2-z2-2xy-2yz-2zx=0
<=>(x+y+z)2-(x2+y2+z2+2xy+2yz+2zx)=0
<=>(x+y+z)2-[(x2+2xy+y2)+(2yz+2zx)+z2]=0
<=>(x+y+z)2-[(x+y)2+2.(x+y).z+z2]=0
<=>(x+y+z)2-(x+y+z)2=0
<=>0=0 (luôn đúng với mọi x,y,z)
Vậy (x+y+z)2-x2-y2-z2= 2(xy+yz+zx) với mọi x,y,z
Ta có :\(x^2+y^2+z^2=xy+yz+xz\Rightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
Phối hợp lại ta được nhứng hằng đẳng thức cộng lại được :
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Mà các đa thức mũ 2 đều lớn hơn hoặc bằng 0 nên ta được :
\(x=y=z\)
Thế vào công thức của đề bài ta được :
\(x^{2012}+y^{2012}+z^{2012}=3x^{2012}=3^{2013}\Rightarrow x^{2012}=3^{2012}\Rightarrow x=3\)
Hay x =y =z = 3
sai rồi
cái đúng khi dùng bất đẳng thức chứ không phải là hằng đằng thức nha bạn
đặt x^2+y^2+z^2=a
xy+yz+zx=b
(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)=a+2b
a(a+2b)+b^2
=a^2+2ab+b^2
=(a+b)^2
=(x^2+y^2+z^2+xy+yz+zx)^2
a ) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3yz^2-z^3+z^3-3z^2x+3zx^2-x^3\)
\(=-3x^2y+3xy^2-3y^2z+3yz^2-3z^2x+3zx^2\)
b)\(x\left(y^2-z^2\right)+z\left(x^2-y^2\right)+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-\left(y^2-z^2+z^2-x^2\right)z+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-z\left(y^2-z^2\right)-z\left(z^2-x^2\right)+y\left(z^2-x^2\right)\)
=\(\left(y^2-z^2\right)\left(x-z\right)+\left(z^2-x^2\right)\left(y-z\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(-\left(y+z\right)+z+x\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(x-y\right)\)
\(x^2+y^2+z^2=xy+yz+zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2zx\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\) \(\Leftrightarrow x=y=z\)
Mà \(x+y+z=6\Leftrightarrow x=y=z=2\)
Vậy....
\(x^2+y^2+z^2=xy+yz+zx\)
\(x^2+y^2+z^2-xy-yz-zx\)=0
Nhân cả 2 vé cho 2 ta được :
\(2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(x^2-2xy+y^2+y^2-2yz+z^2+x^2-2zx+z^2\)=0
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
x-y=0 suy ra x=y
y-z=0suy ra y=z
x-z=0 suy ra x=z
x=y=z
\(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=x^2+y^2+z^2-x^2-y^2-z^2+2xy+2yz+2xz\)
\(=2xy+2yz+2xz\)
\(=2\left(xy+yz+xz\right)\)
đpcm
Ta có:
\(VT=\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2-x^2-y^2-z^2\)
\(=x^2+y^2+z^2+2xy+2yz+2zx-x^2-y^2-z^2\)
\(=2\left(xy+yz+zx\right)=VP\)
=> đpcm