Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^3+5x=0\Leftrightarrow x\left(2x^2+5\right)=0\Leftrightarrow x=0\)
vì \(2x^2+5\ge5>0\forall x\)
Vậy x = 0
2x3 + 5x = 0
<=> x ( 2x2 + 5 ) = 0
<=> \(\orbr{\begin{cases}x=0\\2x^2+5=0\end{cases}}\). Mà 2x2 + 5\(\ge\)5
=> Pt có 1 nghiệm duy nhất là x = 0
ĐKXĐ : \(\hept{\begin{cases}x^2+x-6\ne0\\x^2+4x+3\ne0\\2x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-2\right)\ne0\\\left(x+1\right)\left(x+3\right)\ne0\\x\ne\frac{1}{2}\end{cases}\Rightarrow\hept{\begin{cases}x\ne2;-3\\x\ne-1;-3\\x\ne\frac{1}{2}\end{cases}}}}\)
TXĐ : \(x\ne\left\{-3;-1;\frac{1}{2};2\right\}\)
\(pt\Leftrightarrow\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)
\(\Leftrightarrow\frac{5\left(x+1\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)
\(\Leftrightarrow\frac{3x+9}{\left(x-2\right)\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)
\(\Leftrightarrow\frac{3}{\left(x-2\right)\left(x+1\right)}=\frac{-3}{2x-1}\)
\(\Leftrightarrow\frac{1}{x^2-x-2}=\frac{1}{1-2x}\)
\(\Leftrightarrow x^2-x-2-1+2x=0\)
\(\Leftrightarrow x^2+x-3=0\)
\(\Leftrightarrow\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)-\frac{13}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2-\left(\frac{\sqrt{13}}{2}\right)^2=0\)
\(\Leftrightarrow\left(x+\frac{1-\sqrt{13}}{2}\right)\left(x+\frac{1+\sqrt{13}}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}-1}{2}\\x=\frac{-\sqrt{13}-1}{2}\end{cases}}\)
\(\frac{5}{x^2+x-6}-\frac{2}{x^2+4+3}=-\frac{3}{2x-1}\)
<=> \(\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> \(\frac{5\left(x+1\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> \(\frac{5x+5-2x+4}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> \(\frac{3x+9}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> \(\frac{3\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> \(\frac{1}{x-2}=-\frac{1}{2x-1}\)
<=> x-2=1-2x <=> 3x=3
=> x=1
Đáp số: x=1
a) \(9x^2-\left(2x-5\right)^2=0\)
\(\Leftrightarrow\left(3x-2x+5\right)\left(3x+2x-5\right)=0\)
\(\Leftrightarrow5\left(x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}\)
b) \(\left(3x+4\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(3x+4-2x+1\right)\left(3x+4+2x-1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\5x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=-\frac{3}{5}\end{cases}}\)
a) 9x2-4x2+20x-25=0
5x2+20x=25
5x(x+4)=25
5x là ước của 25=> 5x=5,-5,25,-25,1,-1
=> x=1,-1,5,-5,1/5,-1/5
b) 9x2+24x+16-4x2+4x-1=0
5x2+28x=-15
x(5x+28)=-15
giải tương tự câu a) tìm ước của -15
a) 1,2 - ( x - 0,8 ) = -2( 0,9+ x )
<=> 1,2 - x + 0,8 = -1.8 - 2x
<=> x = -3,8
Vậy x = -3,8
b) 2,3x - 2(0,7 + 2x ) = 3,6 - 1,7x
<=> 2,3x - 1,4 - 4x = 3,6 - 1,7x
<=> -3,4x = 5
<=> x = \(\dfrac{-25}{17}\)
Vậy x = \(\dfrac{-25}{17}\)
c) 3(2,2 - 0,3x ) = 2,6 + (0,1x - 4 )
<=> 6,6 - 0,9x = 2,6 + 0,1x - 4
<=> -x = -8
<=> x = 8
Vậy x = 8
d) 3,6 - 0,5(2x + 1) = x- 0,25(2-4x)
<=> 3,6 - x - 0.5 = x - 0,5 + x
<=> -3x = -3,6
<=> x = 1.2
Vậy x = 1.2
x^2+2x+1+1=(x+1)^2+1 \(\ge1>0\)