Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
781 . 152018
781\(\equiv\)( mod 10 )
710\(\equiv\)9 ( mod 10 )
780\(\equiv\)1 ( mod 10 )
781\(\equiv\)7 ( mod 10 )
Vậy chữ số tận cùng của 781 là 1
152018\(\equiv\)( mod 10 )
158\(\equiv\)5 ( mod 10 )
1580\(\equiv\)5 ( mod 10 )
15960\(\equiv\)5 ( mod 10 )
151920\(\equiv\)5 ( mod 10 )
152000\(\equiv\)5 ( mod 10 )
152007\(\equiv\)5 ( mod 10 )
152014\(\equiv\)5 ( mod 10 )
152018\(\equiv\)5 ( mod 10 )
Vậy chữ số tận cùng của 152018 là 5
\(\Rightarrow\)Chữ số tận cùng của 781 . 152018 là 7 . 5 = 35
Vậy chữ số tận cùng của 781 . 152018 là 5
Hk tốt
20n+9 và 30n+13 nguyên tố cùng nhau khi ƯCLN(20n+9;30n+12)=\(\pm\)1
Gọi ƯCLN(20n+9;30n+12) là d
\(\Rightarrow\)20n+9 \(⋮\)d
30n+13 \(⋮\)d
\(\Rightarrow\)3.(20n+9)=60n+27\(⋮\)d
2.(30n+13)=60n+26 \(⋮\)d
\(\Rightarrow\)(60n+27)-(60n+26)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d\(\in\)ƯCLN(1)={1;-1}
Vậy 20n+9 và 30n+13 nguyên tố cùng nhau.
tóm lại cách làm bài này là:
gọi ưcln của những số cần chứng minh là d
sau đó tìm và nhân sao cho số n của 2 số bằng nhau.
VD: như bài trên mk lấy là số 60
sau đó trừ đi lấy kết quả ( bạn yên tâm tất cả kết quả đều là 1 hết, nếu không phải thì đề bài sai)
rồi làm như mình làm ở trên.
bài nào khó thì gửi cho mk nha. mk sẽ giúp bạn nhiệt tình. hi hi....
Vì x chia 6 dư 4, chia 9 dư 7 nen ta có
x+2 chia hết cho 6 và 9
Suy ra x+2 thuộc BC(6,9)
Ta có 6=2.3 suy ra BCNN(6,9)=2.3^2=18
9=3^2
Vậy x+2 thuộc BC(6,9)={0;18;36;....}
x thuộc {16;34;....}
Mà 30<x<100 nên x thuộc {36;70;88}
bây h tao mới bít mày bị đúp
cái j á