Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo lời giải tại đây:
Câu hỏi của Linh nè - Toán lớp 9 | Học trực tuyến
Ta có \(f\left(x\right)=ax^2+bx+c>0\forall x\)
\(\Rightarrow f\left(-2\right)>0\Rightarrow4a-2b+c>0\Rightarrow4a+c>2b\)(*)
Ta có f(x)=ax2+bx+c >0 với mọi x
=> f(-1) >0 => a-b+c>0 => a+c >b (**)
Từ (*) (**) => 5a+2c > 3b => \(\frac{5a+2c}{b}>3\left(b>0\right)\)
\(\Rightarrow\frac{3350a+1340c}{b}>2010\)(***)
Mặt khác ta lại có:
f(x)=ax2+bx+c>0 với mọi x
=> b2<4ac (vì a>0) => 4ac>b2
\(\Leftrightarrow\frac{4ac}{b}>b\Leftrightarrow\frac{4ac}{b}+\frac{1}{b}>b+\frac{1}{b}\ge2\)(Theo BĐT Cosi), mà 0<b\(\ne\)1
=> \(\frac{4ac}{b}+\frac{1}{b}>2\)(****)
Từ (***)(****) \(\Rightarrow\frac{3350+1340c}{b}+\frac{4ac+1}{b}>2012\)
\(\Leftrightarrow\frac{3350+1340c+4ac+2b+1}{b}>2014\left(đpcm\right)\)
\(ab+bc+ca=0\)
=> \(\frac{ab+bc+ca}{abc}=0\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Đặt: \(\frac{1}{a}=x;\)\(\frac{1}{b}=y;\)\(\frac{1}{c}=z\)
Ta có: \(x+y+z=0\)
=> \(x^3+y^3+z^3=3xyz\) (tự c/m, ko c/m đc ib)
hay \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
\(B=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc.\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc.\frac{3}{abc}=3\)
Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có
\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)
Ta lấy (3) - 2(2) + (1) vế theo vế ta được
2a = p - 2n + m
=> 2a là số nguyên
Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được
2b = 4n - p - 3m
=> 2b cũng là số nguyên
Trời b^2-4ac là đenta cái này lên 9 HK 2 thì biết rõ hơn có còn cái đenta đó chỉ dùng để tìm nghiệm hữu tỉ thôi