Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(1-\frac{1}{2}\right)-\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{6}\right)-....-\left(1-\frac{1}{200}\right)\)
\(M=-\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-.....-\frac{1}{200}\right)=-\frac{1}{2}\left(1-\frac{1}{2}+...-\frac{1}{100}\right)\)
Xét:
\(S=1-\frac{1}{2}+....-\frac{1}{100}.S=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+....+\frac{1}{100}\right)=\frac{1}{51}+...+\frac{1}{100}\)
\(\Rightarrow M=-\frac{1}{2}\left(\frac{1}{51}+....+\frac{1}{100}\right)\)
N:M=-2
a) \(\frac{1}{2}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< 1\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)+...+\left(\frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}\right)\)\(\frac{1}{60}\cdot10< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}\cdot10\)
\(\frac{1}{6}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{5}\)(1)
\(\frac{1}{70}\cdot10< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{60}\cdot10\)
\(\frac{1}{7}< \frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}< \frac{1}{6}\)(2)
.... (tương tự )
\(\frac{1}{100}\cdot10< \frac{1}{91}+\frac{1}{92}+...+\frac{1}{100}< \frac{1}{90}\cdot10\)
\(\frac{1}{10}< \frac{1}{91}+...+\frac{1}{100}< \frac{1}{9}\)
Từ (1)(2)(3)(4) và (5)
\(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}< \frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\)
\(\frac{1}{2}< \frac{1624}{2520}< \frac{1}{51}+...+\frac{1}{100}\)
\(1>\frac{1879}{2520}>\frac{1}{51}+...+\frac{1}{100}\)
Chứng minh rằng \(\frac{7}{12}<\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{40}<\frac{5}{6}\)
\(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
\(\Rightarrow A=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{199}+\frac{1}{200}\right)\)\(>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)(50 số \(\frac{1}{150}và\frac{1}{200}\))
mà \(\frac{1}{150}+...+\frac{1}{150}+\frac{1}{200}+...+\frac{1}{200}=\frac{1}{150}.50+\frac{1}{200}.50=\frac{1}{3}+\frac{1}{4}\)\(=\frac{7}{12}\)=> đpcm
còn 1 cái đề bài bn hỏi mk nữa:
\(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{5}{8}\)
ta có \(B=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>50.\left(\frac{1}{101}\right)\)>1/3
\(C=\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>50.\left(\frac{1}{151}\right)=\frac{50}{151}\)>1/3
mà D+E>\(\frac{1}{3}+\frac{1}{3}=\frac{2}{3}\)mà 2/3>5/8.
vậy....
chưa chắc đã đuk
sai đề kìa
sao lại sai