Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(2C=1-\frac{1}{3^{99}}\)
\(C=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}\)(đpcm)
b, Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{397}{3^{100}}\)
\(A=\frac{3}{4}-\frac{397}{4.3^{100}}< \frac{3}{4}\)(đpcm)
\(\frac{1}{2!}\) + \(\frac{2}{3!}\) + \(\frac{3}{4!}\) +...+ \(\frac{99}{100!}\)
= \(\frac{2-1}{2!}\) + \(\frac{3-1}{3!}\) + \(\frac{4-1}{4}\) +...+ \(\frac{100-1}{100!}\)
= \(\frac{1}{1!}\) - \(\frac{1}{2!}\) + \(\frac{1}{2!}\) - \(\frac{1}{3!}\) + \(\frac{1}{3!}\) - \(\frac{1}{4!}\) +...+ \(\frac{1}{99!}\) - \(\frac{1}{100!}\)
= 1- \(\frac{1}{100!}\) < 1
1) \(+2x+3y⋮17\)
\(\Rightarrow26x+39y⋮17\)
\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)
Mà \(17x+34y⋮17\)
\(\Rightarrow9x+5y⋮17\)
\(+9x+5y⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)
Mà \(34x+17y⋮17\)
\(\Rightarrow2x+3y⋮17\)
Ta có: \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(\frac{1}{3}A=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{100}{3^{101}}\)
\(\frac{2}{3}A=\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)-\left(\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{100}{3^{101}}\right)\)
\(\frac{2}{3}A=\frac{1}{3}+\left(\frac{2}{3^2}-\frac{1}{3^2}\right)+\left(\frac{3}{3^3}-\frac{2}{3^3}\right)+...+\left(\frac{100}{3^{100}}-\frac{99}{3^{100}}\right)-\frac{100}{3^{101}}\)
\(=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{100}{3^{101}}\)
Đặt: \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(\Rightarrow\frac{1}{3}B=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{101}}\)
\(\Rightarrow\frac{2}{3}B=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)-\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{101}}\right)\)
\(=\frac{1}{3}-\frac{1}{3^{101}}\)\(\Leftrightarrow B=\left(\frac{1}{3}-\frac{1}{3^{101}}\right):\frac{2}{3}=\left(\frac{1}{3}-\frac{1}{3^{101}}\right).\frac{3}{2}\)
Thay \(B\) vào \(\frac{2}{3}A\), ta có: \(\frac{2}{3}A=\frac{3}{2}\left(\frac{1}{3}-\frac{1}{3^{101}}\right)-\frac{100}{3^{101}}\)
\(\Rightarrow A=\left[\frac{3}{2}\left(\frac{1}{3}-\frac{1}{3^{101}}\right)-\frac{100}{3^{101}}\right]:\frac{2}{3}=\frac{9}{4}\left(\frac{1}{3}-\frac{1}{3^{101}}\right)-\frac{150}{3^{101}}\)
\(A=\frac{3}{4}-\frac{9}{4}.\frac{1}{3^{101}}-\frac{150}{3^{101}}\Rightarrow A< \frac{3}{4}\)
Vậy \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}< \frac{3}{4}\)(ĐPCM)
Xong.