\(CMR:\frac{12n+1}{30n+2}\) là phân số tối giản.Với n\(\in\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

Em tham khảo nhé!

Câu hỏi của Trần Đỗ Bảo Trân - Toán lớp 6 - Học toán với OnlineMath

29 tháng 1 2018

Gọi d là ƯCLN(12n + 1, 30n + 2), d ∈ N*

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(12n+1,30n+2\right)=1\)

\(\Rightarrow\) \(\frac{12n+1}{30n+2}\) là phân số tối giản.

29 tháng 1 2018

Gọi d là ƯCLN(12n+1, 30n+2)

\(\Rightarrow\hept{\begin{cases}12n+1\\30n+2\end{cases}}\)chia hết cho d\(\Rightarrow\hept{\begin{cases}5\left(12n+1\right)\\2\left(30n+2\right)\end{cases}}\)Chia hết cho d\(\Rightarrow\hept{\begin{cases}60n+5\\60n+4\end{cases}}\)chia hết cho d

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)\) chia hết cho d

\(\Rightarrow60n+5-60n-4\)

\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)\)

\(\Rightarrow1\)chia hết cho d

\(\Rightarrow d=1\)

Vậy với mọi n\(\in N\)thì \(\frac{12n+1}{30n+2}\)là phân số tối giản

5 tháng 2 2016

Gọi d là ƯCLN(12n+1;30n+2)

=>12n+1 \(\div\) d => 5(12n+1) \(\div\) d => 60n+5 \(\div\) d

và 30n + 2 \(\div\) d => 2(30n+2) \(\div\) => 60n+4 \(\div\) d

=> 60n+5-(60n+4) \(\div\) d

=> 60n+5-60n-4 \(\div\) d

=> 1 \(\div\) d

=> d=1

=> ƯCLN(12n+1;30n+2)=1

=> \(\frac{12n+1}{30n+2}\) là phân số tối giản

5 tháng 2 2016

Gọi ƯCLN( 12n+1; 30n+2 ) = d

⇒ 12n+1  5.( 12n+1 ) ⋮ d

⇒ 30n+2 ⋮ ⇒ 2.( 30n+2 ) ⋮ d

[2.( 30n+2 ) -  5.( 12n+1 ) ] ⋮ d

⇒ [ ( 60n+4 ) - ( 60n+5 ) ] ⋮ d

⇒ ⋮ ⇒ d = + 1

Vì ƯC( 12n+1; 30n+2 ) = + 1 ⇒ \(\frac{12n+1}{30n+2}\) là p/s tối giản ( đpcm )

 

25 tháng 2 2016

Gọi d là ƯC ( 30n + 1 ; 15n + 2 )

=> 30n + 1 ⋮ d => 2.( 30n + 1 ) ⋮ d

=> 15n + 2 ⋮ d => 4.( 15n + 2 ) ⋮ d

=> [ 2.( 30n + 1 ) - 4.( 15n + 2 ) ] ⋮ d

=> [ ( 60n + 2 ) - ( 60n + 8 ) ] ⋮ d

=> - 6 ⋮ d => d = { - 6 ; - 1 ; 1 ; 6 }

Vì ƯC ( 30n + 1 ; 15n + 2 ) = { - 6 ; - 1 ; 1 ; 6 } nên 30n + 1 / 15n + 2 không là p/s tối giản

3 tháng 2 2017

Gọi d là ƯCLN(12n + 1; 30n + 2) Nên ta có :

12n + 1 ⋮ d và 30n + 2 ⋮ d

=> 5(12n + 1) ⋮ d và 2(30n + 2) ⋮ d

=> 60n + 5 ⋮ d và 60n + 4 ⋮ d

=> (60n + 5) - (60n + 4) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN(12n + 1; 30n + 2) = 1 nên (12n + 1)/(30n + 2) tối giản ( đpcm )

12 tháng 2 2017

mk biết làm bài này đấy nhưng hơi dài

12 tháng 2 2017

Hướng dẫn: Đặt (tử, mẫu)=d

Phương pháp: Tìm được d = 1.

Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n. 

                Cuối cùng sẽ tìm được 1 là bội của b => d=1

Còn lại cậu tự làm nhé!

15 tháng 8 2020

Gọi d là ƯCLN của 12n + 1 và 30n + 2

12n + 1 chia hết cho d ; 30n + 2 chia hết cho d

=> 5 ( 12n + 1 ) chia hết cho d ; 2 ( 30n + 2 ) chia hết cho d

=> 60n + 5 chia hết cho d ; 60n + 4 chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> Đpcm

15 tháng 8 2020

Đặt \(\left(12n+1;30n+2\right)=d\)\(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5.\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản

9 tháng 8 2016

Bài 2:

a)Gọi UCLN(14n+3;21n+4) là d

Ta có:

[3(14n+3)]-[2(21n+4)] chia hết d

=>[42n+9]-[42n+8] chia hết d

=>1 chia hết d

=>d=1Suy ra 14n+3 và 21n+4 là 2 số nguyên tố cùng nhau

=>Phân số trên tối giản

b)Gọi UCLN(12n+1;30n+2) là d 

Ta có:

[5(12n+1)]-[2(30n+2)] chia hết d

=>[60n+5]-[60n+4] chia hết d

=>1 chia hết dSuy ra 12n+1 và 30n+2 là 2 số nguyên tố cùng nhau

=>Phân số trên tối giản

c)Gọi UCLN(3n-2;4n-3) là d

Ta có:

[4(3n-2)]-[3(4n-3)] chia hết d

=>[12n-8]-[12n-9] chia hết d

=>1 chia hết d. Suy ra 3n-2 và 4n-3 là 2 số nguyên tố cùng nhau

=>Phân số trên tối giản

d)Gọi UCLN(4n+1;6n+1) là d

Ta có:

[3(4n+1)]-[2(6n+1)] chia hết d

=>[12n+3]-[12n+2] chia hết d

=>1 chia hết d. Suy ra 4n+1 và 6n+1 là 2 số nguyên tố cùng nhau

=>Phân số trên tối giản

25 tháng 2 2016

Gọi d là ƯC ( 12n + 1 ; 30n + 2 )

=> 12n + 1 ⋮ d => 5.( 12n + 1 ) ⋮ d => 60n + 5 ⋮ d ( 1 )

=> 30n + 2 ⋮ d => 2.( 30n + 2 ) ⋮ d => 60n + 4 ⋮ d ( 2 )

=> [ ( 60n + 5 ) - ( 60n + 4 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯC ( 12n + 1 ; 30n + 2 ) = 1 nên 12n + 1 / 30n + 2  là p/s tối giản ( đpcm )

25 tháng 2 2016

gọi d là ước chung của 12n+1va30n+2

     =>12n+1 chia het d=>30n+5chia het d