\(\forall a,b,c\)ta luôn có \(a^4+b^4+c^4\ge abc\left(a+b+c\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2020

Áp dụng BĐT Cô si, ta có :

\(a^4+b^4\ge2a^2b^2\)

\(b^4+c^4\ge2b^2c^2\)

\(c^4+a^4\ge2c^2a^2\)

\(\Rightarrow a^4+b^4+b^4+c^4+c^4+a^4\ge2a^2b^2+2b^2c^2+2c^2a^2\)

\(\Rightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)( 1 )

Ta lại có :

\(a^2b^2+b^2c^2\ge2ab^2c\)

\(b^2c^2+c^2a^2\ge2bc^2a\)

\(c^2a^2+a^2b^2\ge2ca^2b\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2\ge ab^2c+bc^2a+ca^2b=abc\left(a+b+c\right)\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\forall a;b;c\)( Đpcm )

26 tháng 9 2020

Ta có \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\forall a;b;c>0\)

\(\Leftrightarrow a^4+b^4+c^4-a^2bc-b^2ac-c^2ab\ge0\)

\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2bc-2b^2ac-2c^2ab\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+2a^2b^2+\left(b^2-c^2\right)^2+2b^2c^2+\left(c^2-a^2\right)^2-2a^2c^2-2b^2ac-2c^2ab\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2-\left(c^2-a^2\right)^2+\left(a^2b^2+b^2c^2-2b^2ac\right)\)\(+\left(b^2c^2+c^2a^2-2c^2ab\right)+\left(a^2b^2+c^2a^2-2a^2bc\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(ab-bc\right)^2+\left(bc-ca\right)^2+\left(ab-ac\right)^2\ge0\)

Luôn đúng với mọi a,b,c

28 tháng 8 2016

Nhận xét thấy : \(x^4+y^4+z^4+t^4\ge2x^2y^2+2z^2t^2\ge4xyzt\)

Dấu " =" xảy ra khi \(x=y=z=t\)

Áp dụng :

\(a^4+a^4+b^4+c^4\ge4a^2bc\)

\(a^4+b^4+b^4+c^4\ge4ab^2c\)

\(a^4+b^4+c^4+c^4\ge4abc^2\)

\(\Rightarrow4\left(a^4+b^4+c^4\right)\ge4abc\left(a+b+c\right)\)

\(\Leftrightarrowđpcm\)

Dấu "  = " xảy ra khi \(a=b=c\)

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng

24 tháng 6 2018

\(a^4+b^4\ge ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)+b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)\left(a^2-ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^2-ab+b^2\right)\ge0\)
Dấu "=" xảy ra khi \(a=b\)
Dấu ">" xảy ra khi
\(\left(a^2+2ab\dfrac{1}{2}+\dfrac{1}{4}b^2\right)+\dfrac{3}{4}b^2>0\)
\(\Leftrightarrow\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2>0\)

24 tháng 6 2018

@Toyama Kazuha Giải kiểu gì vậy bạn?

\(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)\)

\("="\Leftrightarrow a=b\)

9 tháng 9 2018

a ) CM : \(a^4+b^4\ge a^3b+b^3a\)

Giả sử điều cần c/m là đúng

\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)

\(\Rightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Rightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)

\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Ta có : \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\end{matrix}\right.\)

\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)

\(\Rightarrow a^4+b^4\ge a^3b+b^3a\)

\(\Rightarrow2\left(a^4+b^4\right)\ge a^4+a^3b+b^4+b^3a\)

\(\Rightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

\(\left(đpcm\right)\)

9 tháng 9 2018

b ) \(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(=a^4+a^3b+a^3c+b^3a+b^4+b^3c+c^3a+c^3b+c^4\)

\(=\left(a^4+b^4+c^4\right)+\left(a^3b+b^3a\right)+\left(b^3c+c^3b\right)+\left(a^3c+c^3a\right)\)

CMTT như a ) : \(\left\{{}\begin{matrix}a^4+b^4\ge a^3b+b^3a\\b^4+c^4\ge b^3c+c^3b\\a^4+c^4\ge a^3c+c^3a\end{matrix}\right.\)

\(\Rightarrow2\left(a^4+b^4+c^4\right)\ge a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge a^4+b^4+c^4+a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\left(đpcm\right)\)

27 tháng 3 2018

a)\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

b,c tương tự

d)Áp dụng bđt AM-GM ta được

\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4a^4b^4c^4}=4a^2bc\)

TT\(\Rightarrow a^4+b^4+b^4+c^4\ge4ab^2c\)

\(a^4+b^4+c^4+c^4\ge4abc^2\)

Cộng vế theo vế ta được \(4\left(a^4+b^4+c^4\right)\ge4\left(a^2bc+ab^2c+abc^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\left(đpcm\right)\)

27 tháng 3 2018

d)

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

\(\Leftrightarrow a^4+b^4+c^4-a^2bc-ab^2c-abc^2\ge0\)

\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2bc-2ab^2c-2abc^2\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+2a^2b^2+\left(b^2-c^2\right)^2+2b^2c^2+\left(c^2-a^2\right)^2+2a^2c^2-2a^2bc-2b^2ac-2c^2ab\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(a^2b^2+b^2c^2-2b^2ac\right)+\left(b^2c^2+c^2a^2-2c^2abc\right)+\left(a^2b^2+c^2a^2-2a^2ab\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2+\left(ab-bc\right)^2+\left(bc-ac\right)^2+\left(ab-ac\right)^2\ge0\)

Luôn đúng với mọi a , b , c

10 tháng 4 2018


1.b

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-d\right)^2+\left(d-a\right)^2\ge0\) tong 4 so khong am luon dung

10 tháng 4 2018

2 . ta có

\(\left(x-y\right)^2\ge0\)

<=> x2-2xy+y2 ≥ 0

<=> x2+4xy-2xy+y2 ≥ 4xy

<=> x2+2xy+y2 ≥ 4xy

<=> (x+y)2 ≥ 4xy

CMTT

(y+z)2 ≥ 4yz

(z+x)2 ≥ 4zx

nhân các vế của bđt ta có

[(x+y)(y+z)(z+x)]2 ≥ 64x2y2z2

<=> (x+y)(y+z)(z+x) ≥ 8xyz

16 tháng 8 2017

Áp dụng bđt Cauchy Schwarz dưới dạng Engel ta có :

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(c+b\right)^2}{a}+\frac{\left(a+c\right)^2}{b}\ge\frac{\left(a+b+c+b+c+a\right)^2}{a+b+c}\)

\(=\frac{\left(2a+2b+2c\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)