Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1.\dfrac{1}{\sqrt{3}-2}-\dfrac{1}{\sqrt{3}+2}=\dfrac{\sqrt{3}+2+2-\sqrt{3}}{3-4}=-4\)\(2.\dfrac{2}{4-3\sqrt{2}}-\dfrac{2}{4+3\sqrt{2}}=\dfrac{8+6\sqrt{2}+6\sqrt{2}-8}{16-18}=\dfrac{-12\sqrt{2}}{2}-6\sqrt{2}\)\(3.\sqrt{17-12\sqrt{2}}+\sqrt{17+12\sqrt{2}}=\sqrt{8-2.2\sqrt{2}.3+9}+\sqrt{8+2.2\sqrt{2}.3+9}=\sqrt{\left(2\sqrt{2}-3\right)^2}+\sqrt{\left(2\sqrt{2}+3\right)^2}=\text{|}2\sqrt{2}-3\text{|}+\text{|}2\sqrt{2}+3\text{|}=4\sqrt{2}\)
\(4.\sqrt{29-4\sqrt{7}}-\sqrt{29+4\sqrt{7}}=\sqrt{28-2.2\sqrt{7}.1+1}-\sqrt{28+2.2\sqrt{7}.1+1}=\sqrt{\left(2\sqrt{7}-1\right)^2}-\sqrt{\left(2\sqrt{7}+1\right)^2}=\text{|}2\sqrt{7}-1\text{|}-\text{|}2\sqrt{7}+1\text{|}=-2\)\(5.\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\dfrac{\sqrt{7+2\sqrt{7}.1+1}-\sqrt{7-2\sqrt{7}.1+1}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\dfrac{\text{|}\sqrt{7}+1\text{|}-\text{|}\sqrt{7}-1\text{|}}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\dfrac{2\sqrt{2}}{2}\)
1)
\(\dfrac{1}{\sqrt{3}-2}-\dfrac{1}{\sqrt{3}+2}\)
\(=\dfrac{\left(\sqrt{3}+2\right)-\left(\sqrt{3}-2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}\)
\(=\dfrac{4}{\left(\sqrt{3}\right)^2-2^2}\)
\(=\dfrac{4}{3-4}=-4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\dfrac{2\sqrt{3}+2}{4\sqrt{3}+4}=\dfrac{2\left(\sqrt{3}+1\right)}{4\left(\sqrt{3}+1\right)}=\dfrac{1}{2}\)
b) \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{4}\left(\sqrt{2}+\sqrt{3}\right)}=\dfrac{\sqrt{5}}{2}\)
c) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\\ =\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=1+\sqrt{2}\)
d) \(\sqrt{9+\sqrt{17}}.\sqrt{9-\sqrt{17}}=\sqrt{\left(9+\sqrt{17}\right)\left(9-\sqrt{17}\right)}\\ =\sqrt{81-17}=\sqrt{64}=8\)
\(a.\dfrac{2\sqrt{3}+2}{4\sqrt{3}+4}=\dfrac{2\left(\sqrt{3}+1\right)}{4\left(\sqrt{3}+1\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
\(b.\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{2\left(\sqrt{2}+\sqrt{3}\right)}=\dfrac{\sqrt{5}}{2}\)
\(c.\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\dfrac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}=\dfrac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2}+\dfrac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}=1+\sqrt{2}\)
\(d.\sqrt{9+\sqrt{17}}.\sqrt{9-\sqrt{17}}=\sqrt{\left(9+\sqrt{17}\right)\left(9-\sqrt{17}\right)}=\sqrt{81-17}=8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
f, \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}+\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=\sqrt{\sqrt{5}+\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}+\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}+\sqrt{5}-1}=\sqrt{2\sqrt{5}-1}\)
mik sửa lại câu f , tí nhé :
f , \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\sqrt{15+6\sqrt{6}}=\sqrt{9+6\sqrt{6}+6}=\left(3+\sqrt{6}\right)^2\)
\(b,Dat:\left\{{}\begin{matrix}\sqrt{17-12\sqrt{2}}=a\\\sqrt{17+12\sqrt{2}}=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ab=1\\a^2+b^2=34\end{matrix}\right.\Rightarrow a^2+b^2+2ab=\left(a+b\right)^2=36=\left(\pm6\right)^2.\Rightarrow\sqrt{17-12\sqrt{2}}+\sqrt{17+12\sqrt{2}}=6\left(\sqrt{17-12\sqrt{2}};\sqrt{17+12\sqrt{2}}\ge0\right)\)
\(c,=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{2}-1+\sqrt{3}-1+2-\sqrt{3}=\sqrt{2}\left(\sqrt{2}>1=\sqrt{1};\sqrt{3}>1=\sqrt{1};2=\sqrt{4}>\sqrt{3}\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\) = \(\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)
= \(\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{\sqrt{2}+1}{3+2\sqrt{2}}\) = \(\dfrac{\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(\sqrt{2}+1\right)\left(3-2\sqrt{2}\right)}{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\)
= \(\dfrac{3\sqrt{2}+4-3-2\sqrt{2}-\left(3\sqrt{2}-4+3-2\sqrt{2}\right)}{9-8}\)
= \(\dfrac{3\sqrt{2}+4-3-2\sqrt{2}-3\sqrt{2}+4-3+2\sqrt{2}}{1}\)
= \(2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\dfrac{5.\left(38^2-17^2\right)}{8\left(47^2-19^2\right)}\\ =\dfrac{5\left(38-17\right)\left(38+17\right)}{8\left(47-19\right)\left(47+19\right)}\\ =\dfrac{5.21.55}{8.28.66}\\ =\dfrac{5.1155}{8.1848}\\ =\dfrac{5.5}{8.8}\\ =\dfrac{25}{64}\)
\(B=\sqrt{\dfrac{0,2\times1,21\times0,3}{7,5\times3,2\times0,64}}\\ =\sqrt{0,0625\times1,890625\times0,04}\\ =\sqrt{\dfrac{121}{25600}}\\ =\dfrac{11}{160}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1 , \(\left(\sqrt{12}-2\sqrt{75}\right).\sqrt{3}=\sqrt{12.3}-\sqrt{300.3}=6-30=-24\)
2 , \(\sqrt{3}.\left(\sqrt{12}.\sqrt{27}-\sqrt{3}\right)=\sqrt{12.27.3}-\sqrt{3.3}=18\sqrt{3}-3\)
3 , \(\left(7\sqrt{48}+3\sqrt{27}-\sqrt{12}\right):\sqrt{3}=\left(28\sqrt{3}+9\sqrt{3}-2\sqrt{3}\right):\sqrt{3}=35\)
4 , bạn làm tương tự nhé
5 , bạn làm tương tự nhé
6 , bạn làm tương tự nhé
Ta có:
\(\dfrac{\sqrt[4]{17+12\sqrt{2}} +\sqrt[4]{17-12\sqrt{2}}}{2}\)
\(=\dfrac{\sqrt[4]{3^2+2.3.(2\sqrt{2})+\left(2\sqrt{2}\right)^2}+\sqrt[4]{3^2-2.3.(2\sqrt{2})+\left(2\sqrt{2}\right)^2}}{2}\)
\(=\dfrac{\sqrt[4]{\left(3+2\sqrt{2}\right)^2}+\sqrt[4]{\left(3-2\sqrt{2}\right)^2}}{2}\)
\(=\dfrac{\sqrt[4]{\left(2+2\sqrt{2}+1\right)^2}+\sqrt[4]{\left(2-2\sqrt{2}+1\right)^2}}{2}\)
\(=\dfrac{\sqrt[4]{[\left(\sqrt{2}+1\right)^2]^2}+\sqrt[4]{[\left(\sqrt{2}-1\right)^2]^2}}{2}\)
\(=\dfrac{\sqrt[4]{\left(\sqrt{2}+1\right)^4}+\sqrt[4]{\left(\sqrt{2}-1\right)^4}}{2}\)
\(=\dfrac{\sqrt{2}+1+\sqrt{2}-1}{2}\)
\(=\dfrac{2\sqrt{2}}{2}\)
\(=\sqrt{2}\) (đpcm)