Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\) \(\geq\) \(\dfrac{\left(x+y\right)^2}{a+b}\)(1)
\(\Leftrightarrow\) \(\dfrac{bx^2+ay^2}{ab}\) \(\geq\) \(\dfrac{\left(x+y\right)^2}{a+b}\)
\(\Leftrightarrow\) (a+b)(bx2+ay2) \(\geq\) ab(x+y)2
\(\Leftrightarrow\) abx2+a2y2+b2x2+aby2 \(\geq\) ab(x2+2xy+y2)
\(\Leftrightarrow\) abx2+(ay)2+(bx)2+aby2 \(\geq\) abx2+2abxy+aby2
\(\Leftrightarrow\) abx2+(ay)2+(bx)2+aby2 -abx2-2abxy-aby2 \(\geq\) 0
\(\Leftrightarrow\) (ay)2-2abxy+(bx)2 \(\geq\) 0
\(\Leftrightarrow\) (ay)2-2(ay).(bx)+(bx)2 \(\geq\) 0
\(\Leftrightarrow\) (ay-bx)2 \(\geq\) 0(2)
Ta có BĐT(2) luôn đúng nên suy ra BĐT(1) luôn đúng.
Dấu = xảy ra khi và chỉ khi x=y=0.
Cho mình sửa dấu =
Dấu= xảy ra khi \(\begin{cases} x=y\\ a=b \end{cases}\)
Khó quá. Đúng là Câu Hỏi Hay!!
a)Áp dụng BĐT AM-GM ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân theo vế 2 BĐT trên có:
\(A\ge9\sqrt[3]{abc\cdot\dfrac{1}{abc}}=9\)
Khi \(a=b=c\)
Bài 2:
a)Sửa đề \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{x+y}\)
Khi \(x=y\)
b)Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có:
\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}=\dfrac{4}{2b}=\dfrac{2}{b}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{2}{c};\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\ge\dfrac{2}{a}\)
Cộng theo vế 3 BĐT trên ta có:
\(2VT\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2VP\Leftrightarrow VT\ge VP\)
Khi \(a=b=c\)
Câu 1: Với \(a;b;c>0\), theo bất đẳng thức Cauchy:
\(a+b+c\ge3.\sqrt[3]{abc}\). Dấu "=" xảy ra khi \(a=b=c\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3.\sqrt[3]{\dfrac{1}{abc}}\). Dấu "=" xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)
Nhân theo vế ta được \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
\(\Rightarrow MinA=9\)
Dấu "=" xảy ra khi a = b = c
5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
áp dụng bđ cosy
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
=> đpcm
6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
hay với mọi x thuộc R đều là nghiệm của bpt
7.áp dụng bđt cosy
\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)
Lời giải:
Đặt $\frac{x}{a}=m; \frac{y}{b}=n; \frac{z}{c}=p$ với $m,n,p>0$.
BĐT cần chứng minh tương đương với:
(m^2a+n^2b+p^2c)(a+b+c)\geq (am+bn+cp)^2$
$\Leftrightarrow m^2(ab+ac)+n^2(ba+bc)+p^2(ca+cb)\geq 2abmn+2amcp+2bncp$
$\Leftrightarrow ab(m^2-2mn+n^2)+bc(n^2-2np+p^2)+ca(m^2-2mp+p^2)\geq 0$
$\Leftrightarrow ab(m-n)^2+bc(n-p)^2+ca(m-p)^2\geq 0$
(luôn đúng với $a,b,c>0$)
Ta có đpcm.
Lời giải:
Áp dụng BĐT Cô-si với \(x; \frac{1}{x}\) là hai số dương:
\(x+\frac{1}{x}\geq 2\sqrt{x.\frac{1}{x}}=2\)
\(\Rightarrow \left(x+\frac{1}{x}\right)^2\geq 4\)
Tương tự, \(\left(y+\frac{1}{y}\right)^2\geq 4\)
\(\Rightarrow \left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\geq 8\) (đpcm)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{1}{x}\\ y=\frac{1}{y}\end{matrix}\right.\Leftrightarrow x=y=1\)
P.s: Có thể thấy điều kiện $x+y=2$ là dư thừa.
Hem thừa .-.
\(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\ge\dfrac{\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2}{2}\ge\dfrac{\left(x+y+\dfrac{4}{x+y}\right)^2}{2}=8\)
Lời giải:
a)
Với \(x>1\Rightarrow x-1>0\). Áp dụng BĐT AM-GM:
\(x=(x-1)+1\geq 2\sqrt{x-1}\)
\(\Rightarrow \frac{\sqrt{x-1}}{x}\leq \frac{\sqrt{x-1}}{2\sqrt{x-1}}=\frac{1}{2}\) (đpcm)
Dấu bằng xảy ra ki \(x-1=1\Leftrightarrow x=2\)
b) Trước tiên, ta có bđt phụ sau:
\(x^3+y^3\geq xy(x+y)\)
\(\Leftrightarrow (x-y)^2(x+y)\geq 0\) (luôn đúng với mọi \(x,y>1\) )
Do đó, \(\frac{x^3+y^3-(x^2+y^2)}{(x-1)(y-1)}\geq \frac{xy(x+y)-x^2-y^2}{(x-1)(y-1)}\geq 8\)
\(\Leftrightarrow xy(x+y)-(x^2+y^2)\geq 8(x-1)(y-1)\)
\(\Leftrightarrow x^2(y-1)+y^2(x-1)-8(x-1)(y-1)\geq 0\)
\(\Leftrightarrow (y-1)[x^2-4(x-1)]+(x-1)[y^2-4(y-1)]\geq 0\)
\(\Leftrightarrow (y-1)(x-2)^2+(x-1)(y-2)^2\geq 0\)
(luôn đúng với mọi \(x,y>1\) )
Do đó ta có đpcm
Dấu bằng xảy ra khi \(x=y=2\)
\(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)
\(\Leftrightarrow a^2y.\left(x+y\right)+b^2x.\left(x+y\right)\ge xy\left(a+b\right)^2\)
\(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy\ge a^2xy+2abxy+b^2xy\)
\(\Leftrightarrow a^2y^2-2abxy+b^2x^2+a^2xy-a^2xy+b^2xy-b^2xy\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)
Dấu bằng xảy ra khi\(\dfrac{a}{x}=\dfrac{b}{y}\)
Xét hiệu:
\(\dfrac{a^2}{x}+\dfrac{b^2}{y}-\dfrac{\left(a+b\right)^2}{x+y}\)
\(=\dfrac{a^2.y\left(x+y\right)}{xy\left(x+y\right)}+\dfrac{b^2x\left(x+y\right)}{xy\left(x+y\right)}-\dfrac{xy\left(a+b\right)^2}{xy\left(x+y\right)}\)
\(=\dfrac{a^2xy+a^2y^2+b^2x^2+b^2xy-a^2xy-2abxy-b^2xy}{xy\left(x+y\right)}\)
\(=\dfrac{a^2y^2-2abxy+b^2x^2}{xy\left(x+y\right)}\)
\(=\dfrac{\left(ay-bx\right)^2}{x^2y+xy^2}\ge0\)
=> BĐT luôn đúng