Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Ta có \(2015^2=\left(2014+1\right)^2=2014^2+2.2014+1\)
=> \(2014^2+1=2015^2-2.2014\)
=> \(B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)
= \(\sqrt{2015^2-2.2014+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)
= \(\sqrt{\left(2015-\frac{2014}{2015}\right)^2}+\frac{2014}{2015}\) = \(2015-\frac{2014}{2015}+\frac{2014}{2015}=2015\)
=> đpcm
Ta có \(2015^2=\left(2014+1\right)^2=2014^2+2.2014+1\)
=> \(2014^2+1=2015^2-2.2014\)
=> \(B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)
= \(\sqrt{2015^2-2.2014+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)
= \(\sqrt{\left(2015-\frac{2014}{2015}\right)^2}+\frac{2014}{2015}\) = \(2015-\frac{2014}{2015}+\frac{2014}{2015}\)
= \(2015\) là số nguyên
=> đpcm
Đặt: n=2014
Ta có: \(1+n^2+\left(\frac{n}{n+1}\right)^2=\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}\)
\(=\frac{\left(n+1\right)^2+n^2\left(n^2+2n+2\right)}{\left(n+1\right)^2}=\frac{\left(n+1\right)^2+2n^2\left(n+1\right)+n^4}{\left(n+1\right)^2}\)
\(=\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}=\left(\frac{n\left(n+1\right)+1}{n+1}\right)^2=\left(n+\frac{1}{n+1}\right)^2\)
\(\Rightarrow\sqrt{1+n^2+\left(\frac{n}{n+1}\right)^2}=n+\frac{1}{n+1}\)
\(\Rightarrow B=2014+\frac{1}{2015}+\frac{2014}{2015}=2015\)
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
ta có: \(A=\sqrt{1+2.2014+2014^2-2.2014+\frac{2014^2}{2015^2}}+\frac{2014}{2015}.\)
\(A=\sqrt{2015^2-2.2015.\frac{2014}{2015}+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)
\(A=\sqrt{\left(2015-\frac{2014}{2015}\right)^2}+\frac{2014}{2015}\)
\(A=2015-\frac{2014}{2015}+\frac{2014}{2015}=2015\)
Vậy A=2015
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vô bài toán được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
\(=1-\frac{1}{\sqrt{2016}}\)
\(\sqrt{2014^2\left(\frac{1}{2014^2}+1+\frac{1}{2015^2}\right)}-\frac{2014}{2015}=2014\sqrt{\left(1+\frac{1}{2014}+\frac{1}{2015}\right)^2}-\frac{2014}{2015}\)
\(=2014\left(1+\frac{1}{2014}+\frac{1}{2015}\right)-\frac{2014}{2015}=2015\)
\(B=\sqrt{2014^2\left(1+\frac{1}{2014}-\frac{1}{2015}\right)^2}+\frac{2014}{2015}=2015\)
2015=2014+1 => 2015^2=2014^2 +2.2014+1
=>2014^2 + 1=2015^2 -2.2014=2015^2 -2. 2014/2015.2015
thế vào =>b= 2015-2014/2015+2014/2015=2015