\(CMR:a^4+b^4+c^4+d^4=4abcd\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2020

đề bài thiếu đấy các bạn mk đánh nhầm

11 tháng 11 2020

\(a^4+b^4+c^4+d^4=\left(a^4+b^4\right)+\left(c^4+d^4\right)\)

Vì \(a^4\ge0\forall a\)\(b^4\ge0\forall b\)

\(\Rightarrow\)Áp dụng bđt Cô-si cho 2 số không âm ta có:

\(a^4+b^4\ge2\sqrt{a^4.b^4}=2a^2b^2\)

Tương tự ta có: \(c^4+d^4\ge2c^2d^2\)

\(\Rightarrow a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\)(1)

Vì \(2a^2b^2\ge0\)\(2c^2d^2\ge0\)\(\forall a,b,c,d\)

\(\Rightarrow\)Áp dụng bđt Cô-si cho 2 số không âm ta có: 

\(2a^2b^2+2c^2d^2\ge2\sqrt{2a^2b^2.2c^2d^2}=2\sqrt{4a^2b^2c^2d^2}=4abcd\)(2)

Từ (1) và (2) \(\Rightarrow a^4+b^4+c^4+d^4\ge4abcd\)( đpcm )

27 tháng 2 2018

*\(\cdot a^4+b^4+c^4+d^4\ge2a^2d^2\)(1)

*\(a^2b^2+c^2d^2\ge2abcd\)(2)

Từ (1) và (2) suy ra: \(a^4+b^4+c^4+d^4\ge4abcd\)

27 tháng 2 2018

Áp dụng BĐT cosi cho 4 số ta có

\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4.b^4.c^4.d^4}\)

a4+b4+c4+d4 ≥ 4abcd(đpcm)

13 tháng 7 2019

#)Giải :

Ta có : \(a^4+b^4+c^4+d^4=4abcd\)

\(\Leftrightarrow a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4+2a^2b^2-4abcd+2c^2d^2=0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)+2\left(ab-cd\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a^2=b^2\\c^2=d^2\\ab=cd\end{cases}}\)

Do a, b, c, d > 0

\(\Leftrightarrow a=b=c=d\left(đpcm\right)\)

2 tháng 4 2019

Áp dụng BĐT Cô-si ta có :

\(a^4+b^4\ge2a^2b^2\)

\(c^4+d^4\ge2c^2d^2\)

\(\Rightarrow a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\)

Mà \(2a^2b^2+2c^2d^2\ge2\sqrt{2ab.2cd}=4abcd\)

\(\Rightarrow a^4+b^4+c^4+d^4\ge4abcd\)

7 tháng 11 2017

câu a bạn phân tích \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ac\right)\)

rồi suy ra bình thường nha

7 tháng 11 2017

\(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow a^4+b^4+c^4+d^4-4abcd=0\Leftrightarrow a^4-2^2b^2+b^4+c^4-2c^2d^2+d^4-4abcd+2a^2b^2+2c^2d^2=\left(a^2+b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab+cd\right)^2\)

28 tháng 1 2018

Với a,b,c,d >0\(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow a^4+b^4+c^4+d^4-4abcd=0\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(c^4-2c^2d^2+d^4\right)+\left(2a^2b^2+2c^2d^2-4abcd\right)=0\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2-2\left(a^2b^2-2abcd+c^2d^2\right)=0\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2-2\left(ab-cd\right)^2=0\)

Ta thấy: \(\left\{{}\begin{matrix}\left(a^2-b^2\right)^2\ge0\forall a,b\\\left(c^2-d^2\right)^2\ge0\forall c,d\\\left(ab-cd\right)^2\ge0\forall a,b,c,d\end{matrix}\right.\)

Do đó: \(\left\{{}\begin{matrix}a^2-b^2=0\\c^2-d^2=0\\ab-cd=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\\ab=cd\end{matrix}\right.\Leftrightarrow a=b=c=d\left(\text{đ}pcm\right)\)

a/

Từ x + y + z = 0 
=> x + y = -z 
<=> (x + y)^3 = (-z)^3 
<=> x^3 + 3x^2y + 3xy^2 + y^3 = -z^3 
<=> x^3 + y^3 + z^3 = -3x^2y - 3xy^2 
<=> x^3 + y^3 + z^3 = -3xy(x+y) 
<=> x^3 + y^3 + z^3 = -3xy(-z) 
<=> x^3 + y^3 + z^3 = 3xyz 

Học tốt

10 tháng 2 2018

Áp dụng BĐT Cauchy, ta có:

\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4abcd\)

Dấu = xảy ra khi a=b=c=d

Vậy a=b=c=d

2 tháng 5 2018

a4+b4+c4+d2>4abed

28 tháng 4 2017

Áp dụng bất đẳng thức cauchy ta có:

\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4\cdot b^4\cdot c^4\cdot d^4}=4abcd\)

Vậy \(a^4+b^4+c^4+d^4\ge4abcd\)

28 tháng 4 2017

Áp dụng BĐT cô-si cho 2 số không âm ta có:

a4+b4\(\ge\)2a2b2

c4+d4\(\ge\)2c2d2

=>a4+b4+c4+d4\(\ge\)2(a2b2+c2d2)(1)

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\end{matrix}\right.\)

Áp dụng BĐT coossi cho 2 số không âm ta có:

a2b2+c2d2\(\ge\)2abcd

=>(1) tương đương a4+b4+c4+d4\(\ge\)4abcd

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}ab=cd\\a^2=b^2\\c^2=d^2\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}a=-b\\c=-d\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}-a=b\\c=-d\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}a=b\\c=d\end{matrix}\right.\)

Vậy...

2 tháng 8 2017

\(a^4+b^4+c^4+d^4=4abcd.\)

\(\Leftrightarrow a^4+b^4+c^4+d^4-4abcd=0\)

\(\Leftrightarrow a^4+b^4-2a^2b^2+c^4+d^4-2c^2d^2-4abcd+2a^2b^2+2c^2d^2=0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(a^2b^2-2abcd+c^2d^2\right)=0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+\left(ab-cd\right)^2=0\)

VÌ \(\left(a^2-b^2\right)^2\ge0;\left(c^2-d^2\right)^2\ge0\)

\(\left(ab-cd\right)^2\ge0\)

mà \(\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+\left(ab-cd\right)^2=0\)

nên \(\hept{\begin{cases}a^2-b^2=0\\c^2-d^2=0\\ab-cd=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=b^2\\c^2=d^2\\ab=cd\end{cases}}}\Leftrightarrow\hept{\begin{cases}a=b\\c=d\\a^2=c^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=b\\c=d\\a=c\end{cases}}\Leftrightarrow a=b=c=d\left(dcpcm\right)\)

2 tháng 8 2017

Hoặc là bợn có thể dùng : \(a^2+b^2\ge2ab\)

:3