Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta áp dụng Cauchy 2 số
\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\left(a^2b^2+c^2d^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\cdot2abcd\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\)
Dấu = khi \(\begin{cases}a^4=b^4\\c^4=d^4\\a^2b^2=c^2d^2\end{cases}\)\(\Rightarrow a=b=c=d\)
Nhanh hơn có thể dùng Cauchy 4 số
\(a^4+b^4+c^4+d^4\ge4\cdot\sqrt[4]{a^4b^4c^4d^4}\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\)
Dấu = khi các biến bằng nhau
\(\Leftrightarrow a=b=c=d\)
Ta có: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
a) \(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\ge4abcd\)
b) \(a^2+1\ge2a,b^2+1\ge2b,c^2+1\ge2c\)
\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge8abc\)
c) \(a^2+4\ge4a,b^2+4\ge4b,c^2+4\ge4c,d^2+4\ge4d\)
\(\Rightarrow\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge256abcd\)
a) \(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left[\left(ab\right)^2+\left(cd\right)^2\right]\ge2\cdot2abcd=4abcd\)
b) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a\cdot2b\cdot2c=8abc\)
c) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a\cdot4b\cdot4c\cdot4d=256abcd\)
Có: `x-2y+4=0`
`<=>x=2y-4`
Thay `x=2y-4` vào `(E)` có:
`3(2y-4)^2+4y^2-48=0`
`<=>3(4y^2-16y+16)+4y^2-48=0`
`<=>12y^2-48y+48+4y^2-48=0`
`<=>` $\left[\begin{matrix} y=3\\ y=0\end{matrix}\right.$
`@y=3=>x=2.3-4=2`
`@y=0=>x=2.0-4=-4`
`=>` Tọa độ giao điểm của `(E)` và `(d)` là: `(2;3)` và `(-4;0)`
`->D`
\(\Rightarrow\) \(chọn\) \(D\)
\(xét\) \(hpt\) \(:\)
\(\left\{{}\begin{matrix}3x^2+4y^2-48=0\\x-2y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(2y-4\right)^2+4y^2-48=0\\x=2y-4\end{matrix}\right.\)
\(giải:\) \(3\left(4y^2-16y+16\right)+4y^2-48=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}12y^2-48y+48+4y^2-48=0\\16y^2-48y=0\\\left[{}\begin{matrix}y=0\Rightarrow x=-4\\y=3\Rightarrow x=2\end{matrix}\right.\end{matrix}\right.\)
\(vậy\) \(giao\) \(điểm\) \(của\) \(elip\) \(\left(E\right)\) \(là\) \(\left(-4;0\right)\) \(và\) \(\left(2;3\right)\)
Gọi \(D\left(x;y\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(2;1\right)\\\overrightarrow{AD}=\left(x-1;y+1\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\\AD=\sqrt{\left(x-1\right)^2+\left(y+1\right)^2}\end{matrix}\right.\)
Do ABCD là hình vuông nên:
\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{AD}=0\\AB=AD\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2\left(x-1\right)+y+1=0\\\left(x-1\right)^2+\left(y+1\right)^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2+4\left(x-1\right)^2=5\)
\(\Leftrightarrow\left(x-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=2\Rightarrow y=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}D\left(0;1\right)\\D\left(2;-3\right)\end{matrix}\right.\)
Với \(D\left(0;1\right)\Rightarrow\overrightarrow{DC}=\overrightarrow{AB}\Rightarrow C\left(2;2\right)\)
Cả 4 đáp án đều sai
\(\left\{{}\begin{matrix}\dfrac{a+b}{6}=\dfrac{b+c}{5}\\\dfrac{a+b}{6}=\dfrac{c+a}{7}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=\dfrac{a}{2}\\c=\dfrac{3a}{4}\end{matrix}\right.\)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\dfrac{a^2}{4}+\dfrac{9a^2}{16}-a^2}{2.\dfrac{a}{2}.\dfrac{3a}{4}}=-\dfrac{1}{4}\)
\(cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{a^2+\dfrac{9a^2}{16}-\dfrac{a^2}{4}}{2a.\dfrac{3a}{4}}=\dfrac{7}{8}\)
\(cosC=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{11}{16}\)
\(P=-\dfrac{1}{4}+\dfrac{14}{8}+\dfrac{44}{16}=\dfrac{17}{4}\)
a) \(\begin{array}{l}{(x - 3)^4} = {x^4} + 4{x^3}.( - 3) + 6{x^2}.{( - 3)^2} + 4x.{( - 3)^3} + {( - 3)^4}\\ = {x^4} - 12{x^3} + 54{x^2} - 108x + 81\end{array}\)
b) \({(3x - 2y)^4} = 81{x^4} - 216{x^3}y + 216{x^2}{y^2} - 96x{y^3} + 16{y^4}\)
c)
\(\begin{array}{l}{(x + 5)^4} + {(x - 5)^4} = {x^4} + 20{x^3} + 150{x^2} + 500x + 625\\ + {x^4} - 20{x^3} + 150{x^2} - 500x + 625\\ = 2{x^4} + 300{x^2} + 1250\end{array}\)
d) \({(x - 2y)^5} = {x^5} - 10{x^4}y + 40{x^3}{y^2} - 80{x^2}{y^3} + 80x{y^4} - 32{y^5}\)
ta có:a^4+b^4>=2(ab)^2
c^4+b^4>=2(cd)^2
cộng hai vế lai ta có:
a^4+b^4+c^4+d^4>=2[(ab)^2+(cd)^2]
>=4abcd
Để a^4+b^4+c^4+d^4=4abcd thì :
+) a^4+b^4=2(ab)^2
<->(a^2-b^2)^2=0-->a^2=b^2-->a=b(1)
+)c^4+b^4=2(cd)^2
<->(c^2-d^2)^2=0-->c^2-d^2=0-->c=d(2)
+)a^4+b^4+c^4+d^4=4abcd
<->a^4+c^4=2*(ac)^2
<->(a^2-c^2)^2=0-->a^2=c^2-->a=c(3)
từ (1)(2)(3)-->a=b=c=d(ĐPCM)
giải lằng nhằng quá