Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 3A= \(^{3^2+3^3+3^4+...+3^{100}}\)
3A-A=2A= (\(3^2+3^3+3^4+...+3^{100}\))-(\(3+3^2+3^3+...+3^{99}\))
2A= \(3^{100}-3\)
theo bài ra ta có
2A+3=\(3^n\)= \(3^{100}-3+3=3^n\)=\(^{3^{100}}\)\(\Rightarrow\)n=100
\(\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+....+\left(2^2+2\right)\)
\(=2^9.\left(2+1\right)+2^7.\left(2+1\right)+...+2.\left(2+1\right)\)
\(=2^9.3+2^7.3+...+2.3\)
\(=3.\left(2^9+2^7+...+2\right)⋮3\)
P/S: mấy bài khác tương tự
\(a,2^{10}+2^9+2^8+...+2\)
\(=\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+...+\left(2^2+2\right)\)
\(=2^9\left(2+1\right)+2^7\left(2+1\right)+...+2\left(2+1\right)\)
\(=2^9.3+2^7.3+...+2.3\)
\(=3\left(2^9+2^7+...+2\right)⋮3\left(đpcm\right)\)
\(b,1+3+3^2+3^3+...+3^{99}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2\left(1+3\right)+...+3^{98}\left(1+3\right)\)
\(=4+3^2.4+...+3^{98}.4\)
\(=4\left(1+3^2+...+3^{98}\right)⋮4\left(đpcm\right)\)
\(c,1+5+5^2+5^3+...+5^{1975}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{1974}+5^{1975}\right)\)
\(=6+5^2\left(1+5\right)+...+5^{1974}\left(1+5\right)\)
\(=6+5^2.6+...+5^{1974}.6\)
\(=6\left(1+5^2+...+5^{1974}\right)⋮6\left(đpcm\right)\)
\(A=3+3^2+...+3^{50}\)
\(\Rightarrow3A=3^2+3^3+...+3^{50}+3^{51}\)
\(\Rightarrow3A-A=3^{51}-3\)
\(\Rightarrow2A=3^{51}-3\)
\(\Rightarrow A=\frac{3^{51}-3}{2}\)
\(B=2-2^2+2^3-2^4+...+2^{2019}-2^{2020}\)
\(2B=2^2-2^3+2^4-2^5+...+2^{2020}-2^{2021}\)
\(B+2B=2-2^{2021}\)
\(3B=2-2^{2021}\)
\(B=\frac{2-2^{2021}}{3}\)
\(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2008.2009}\)
\(C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2008}-\frac{1}{2009}\)
\(C=1-\frac{1}{2009}\)
\(C=\frac{2008}{2009}\)
\(D=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(D=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(D=\frac{1}{2}\left(1-\frac{1}{11}\right)\)
\(D=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)
Ta có:
\(\frac{1\div2003+1\div2004-1\div2005}{5\div2003+5\div2004-5\div2005}\) - \(\frac{2\div2002+2\div2003-2\div2004}{3\div2002+3\div2003-3\div2004}\)
Đơn giản đi hết ta sẽ còn:
\(\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)
2.
Ta có:
Số khoảng cách của các số trong dãy là 23 = 8
=> Tổng của dãy dưới sẽ gấp 8 lần tổng dãy trên.
=> 3025 . 8 = 24200
a: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5+2^5+2^5+2^5+2^5}=2^x\)
\(\Leftrightarrow2^x=\dfrac{4^5}{3^5}\cdot\dfrac{6^5}{2^5}=4^5=2^{10}\)
=>x=10
b: \(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow x\left(x-1\right)^{x+2}\cdot\left(x-2\right)=0\)
hay \(x\in\left\{0;1;2\right\}\)
c: \(6\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
\(\Leftrightarrow5\cdot\left(6-x\right)^{2003}=0\)
\(\Leftrightarrow6-x=0\)
hay x=6
Ta có:
2+2^2+2^3+...+2^180
=\(\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{178}+2^{179}+2^{180}\right)\)
=\(2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{178}.\left(1+2+2^2\right)\)
=\(2.7+2^4.7+...+2^{178}.7\)
=\(7.\left(2+2^4+2^7+...+2^{178}\right)⋮7\)
Ta lại có:
2+2^2+2^3+...+2^180
=\(\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{176}+2^{177}+2^{178}+2^{179}+2^{180}\right)\)
đặt nhân tử chung r làm tương tự câu trên nhé
b,\(3+3^2+3^3+...+3^{99}\)
=\(\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{98}+3^{99}\right)\)
đặt nhân tử chung r làm tương tự câu đầu nhé
còn chứng minh chia hết cho 13 bạn cứ ghép 3 số liên tiếp vs nhau là được nhân tử chung là 39=13.3
a) ta có: 2 + 2^2 + 2^3 + ...+ 2^180
= (2+2^2+2^3) + (2^4+2^5+2^6) + ...+ (2^178+2^179+2^180)
= 2.(1+2+2^2) + 2^4.(1+2+2^2) + ...+ 2^178.(1+2+2^2)
= 2.7+2^4.7+...+2^178.7
= (2+2^4+...+2^178).7 chia hết cho 7
chia hết cho 31 bn lm tương tự nha
b) ta có: 3 + 3^2 + 3^3+3^4+...+3^99
= (3+3^2+3^3) + (3^4+3^5+3^6) + ...+ (3^97+3^98+3^99)
= 3.(1+3+3^2)+3^4.(1+3+3^2)+...+3^97.(1+3+3^2)
= 3.13+3^4.13+...+3^97.13
= (3+3^14+...+3^97).13 chia hết cho 13
3 . 33 \(\le\)3n \(\le\)22018 : 22003
=> 34 \(\le\)3n \(\le\)215
=> n = 4 ; 5 ; 6 ; 7 ; 8 ; 9
P/s: Như bài trước
n = 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15
Tk cho mk nha ae!!!!!!!!! Tk đúng đấy nhé...