Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Gọi ƯCLN (\(n+3;2n+5\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(n+3\right)⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow\left(2n+6\right)⋮d\\\left(2n+5\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN (\(n+3;2n+5\))=1
\(\Rightarrow\frac{n+3}{2n+5}\)là phân số tối giản(đpcm)
b)Gọi ƯCLN (\(2n+9;3n+14\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(2n+9\right)⋮d\Rightarrow3\left(2n+9\right)⋮d\Rightarrow\left(6n+27\right)⋮d\\\left(3n+14\right)⋮d\Rightarrow2\left(3n+14\right)⋮d\Rightarrow\left(6n+28\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+28\right)-\left(6n+27\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN (\(2n+9;3n+14\))=1
\(\Rightarrow\frac{2n+9}{3n+14}\) là phân số tối giản.(đpcm)
c)Gọi ƯCLN(\(6n+11;2n+5\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(6n+11\right)⋮d\\\left(2n+5\right)⋮d\Rightarrow3\left(2n+5\right)⋮d\Rightarrow\left(6n+15\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+15\right)-\left(6n+11\right)⋮d\)
\(\Rightarrow4⋮d\)
Mà \(\left(6n+15\right);\left(6n+11\right)⋮̸2\)
\(\Rightarrow d=1\)
⇒ƯCLN(\(6n+11;2n+5\))=1
\(\Rightarrow\frac{6n+11}{2n+5}\)là phân số tối giản (đpcm)
d)Gọi ƯCLN(\(12n+1;30n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(12n+1\right)⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow\left(60n+5\right)⋮d\\\left(30n+2\right)⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow\left(60n+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(12n+1;30n+2\))=1
\(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản (đpcm)
e)Gọi ƯCLN(\(21n+4;14n+3\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(21n+4\right)⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow\left(42n+8\right)⋮d\\\left(14n+3\right)⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow\left(42n+9\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(21n+4;14n+3\))=1
\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản (đpcm)
f) Gọi ƯCLN(\(2n+3;n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(2n+3\right)⋮d\\\left(n+2\right)⋮d\Rightarrow2\left(n+2\right)⋮d\Rightarrow\left(2n+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(2n+3;n+2\))=1
\(\Rightarrow\frac{2n+3}{n+2}\)là phân số tối giản (đpcm)
g) Gọi ƯCLN(\(n+1;3n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(n+1\right)⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow\left(3n+3\right)⋮d\\\left(3n+2\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(n+1;3n+2\))=1
\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản (đpcm)
Gọi \(ƯCLN\left(2n+5;3n+7\right)\) là \(d\)
\(\Rightarrow\)\(\left(2n+5\right)⋮d\) và \(\left(3n+7\right)⋮d\)
\(\Rightarrow\)\(3\left(2n+5\right)⋮d\) và \(2\left(3n+7\right)⋮d\)
\(\Rightarrow\)\(\left(6n+15\right)⋮d\) và \(\left(6n+14\right)⋮d\)
\(\Rightarrow\)\(\left(6n+15\right)-\left(6n+14\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n+15-14\right)⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(2n+5;3n+7\right)=\left\{1;-1\right\}\)
Vậy \(\frac{2n+5}{3n+7}\) là phân số tối giản
a Gọi ước chung của 2n+5 và 3n+7 là n
2n+5 ⋮ x=>6n+15⋮x
3n+7 ⋮ x =>6n+14 ⋮x
=>1 chia hết x=> x thuộc ước của 1
Vậy phân số đó tối giản
b 6n-14 chia hết x
2n-5 chia hết x=>6n-15 chia hết x
=>1 chia hết x=> x thuộc ước của 1
Vậy phân số đó tối giản
Ta có:A=n-5/3n-14
Đặt ƯC(n-5/3n-14)=d
=>ƯC(3n-15/3n-14)=d
Do (3n-15)-(3n-14)=1
=>là 2 số nguyên tố cùng nhau
=>3n-15/3n-14 là phân số tối giản
=>n-5/3n-14 là phân số tối giản
Vậy n-5/3n-14 là phân số tối giản
ta có b = 1 + 92n + 452n + 19452n
= 1 + 81n + 452n + 19752n
= 1+ ...1 + ...5 + ...5 (vì số nào có tận cùng = 1 hoặc = 5 thì mũ mấy cũng có tận cùng là = 1 hoặc 1)
= ...12
vì các số chính phương có tận cùng là một trong các số 0;1;4;9;6;5
mà b có tận cùng bằng hai => b ko phải là số chính phương (đpcm)
Bài 1. Tìm n thuộc N sao cho
1, n + 2 : hết cho n + 1
\(n+2⋮n+1\)
\(\Rightarrow n+1+1⋮n+1\)
mà \(n+1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)
n + 1 = -1 => n = -1 - 1 = -2
n + 1 = 1 => n = 1 - 1 = 0
Vậy n = -2 hoặc 0, mà n thuộc N (theo đề bài)
=> n = 0
2, 2n + 7 : hết cho n + 1
\(2n+7⋮n+1\)
\(\Rightarrow2n+2+5⋮n+1\)
mà \(2n+2⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
n + 1 = -5 => n = -6
n + 1 = -1 => n = -2
n + 1 = 1 => n = 0
n + 1 = 5 => n = 4
Vậy n \(\in\left\{-6;-2;0;4\right\}\)mà n thuộc N
=> n = 0 hoặc 4
- Các câu tiếp theo của b1 làm tương tự nhé :))
Làm mẫu 1 vài câu thôi nhé :))
Bài 2. Tìm các chữ số x,y biết
2, 2x85y : hết cho cả 2 , 3 , 5
2x85y : hết cho 2 và 5 => y = 0
Để 2x850 : hết cho 3 thì 2 + x+ 8 + 5 + 0 phải : hết cho 3
=> 15 + x chia hết cho 3
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=6\\x=9\end{matrix}\right.\)
Vậy để 2x85y : hết cho cả 2 , 3 , 5 thì y = 0 và x = 0 hoặc x = 3 hoặc x = 6 hoặc x = 9
3, 2x3y : hết cho cả 2 và 5 ; chia cho 9 dư 1
2x3y : hết cho cả 2 và 5 => y = 0
2x30 chia cho 9 dư 1 => 2 + x + 3 + 0 - 1 chia hết cho 9
=> 4 + x chia hết cho 9
=> x = 5
Vậy 2x3y : hết cho cả 2 và 5 ; chia cho 9 dư 1 khi y = 0 và x = 5
Bài giải
Theo đề bài: 92n - 14 chia hết cho 5
Xét 92n:
Vì 2n là một số chẵn nên 9số chẵn luôn có chữ số tận cùng là 1. (Nếu không tin bạn có thể thử lại)
Vì 1 - 4 = -3
Mà -3 không chia hết cho 5 nên đề bài không chính xác
Có lẽ bạn đã ghi nhầm dấu "+" thành dấu "-"
Nếu bạn toán là dấu "+" thì ta có tiếp:
1 + 4 = 5
Vì 5 chia hết cho 5
Nên 92n + 14 chia hết cho 5 (nhớ dấu cộng nha chứ không phải dấu trừ đâu !)