Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ lm 1 bài còn lại cứ tương tự mà lm! Bn hx lớp 7 ak?
3) Ta có: x2 + 2x + 2 = (x2 + 2x +1 ) +1 = ( x+ 1)2 +1
Vì ( x+ 1)2 \(\ge\) 0 => ( x + 1)2 + 1 \(\ge\) 1 > 0 (đpcm)
Mình giúp 2 bài cuối thôi,các bài trên bạn có thể tự giải và 1 bài @Mỹ Duyên đã giải rồi.
4.Ta có: \(x^2-x+1=x^2-2.x.\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\)\(\geq\) 0 \(\Rightarrow\) \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) \(\geq\) \(\dfrac{3}{4}\) > 1 \(\forall\) x
5.Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
vì \(-\left(x-2\right)^2\) \(\leq\) 0 \(\Rightarrow\) \(-\left(x-2\right)^2-1\) \(\leq\) \(-1\) <0 \(\forall\) x
a) \(x^2-5x+8=\left(x^2-5x+6,25\right)+1,75=\left(x-2,5\right)^2+1,75\ge1,75>0\rightarrowđpcm\)
b) \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1=-\left(2x+1\right)^2-1\le-1< 0\rightarrowđpcm\)
A =x2 -5x +8 >0 với mọi x
= x2-5x+\(\dfrac{25}{4}+\dfrac{7}{4}\)
=\(\left(x-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\)
do \(\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\)
=> \(\left(x-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
=> A luôn lớn hơn 0 vs mọi x
B= -4x2 -4x-2 < 0 với mọi x
=-(4x2+4x+2)
=-4x2-4x-1-1
=-\(\left(4x^2+4x+1+1\right)\)
=-\(\left[4\left(x^2+x+\dfrac{1}{4}\right)+1\right]\)
= -\(\left[4\left(x+\dfrac{1}{2}\right)^2+1\right]\)
=-4\(\left(x+\dfrac{1}{2}\right)^2-1\)
do \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\)
=> -4 \(\left(x+\dfrac{1}{2}\right)^2\le0\)
=> \(-4\left(x+\dfrac{1}{2}\right)^2-1\le-1\)
vậy B luôn nhỏ hơn 0 vs mọi x
E=4x2+5x+5>0 với mọi x
=(4x2 +4x+1)+4
=(2x+1)\(^2\)+4
Với mọi x thuộc R thì (2x+1)\(^2\)>=0
Suy ra(2x+1)\(^2\)+4>=4>0
Hay E>0 với mọi x thuộc R(đpcm)
F=5x2-6x+7>0 với mọi x
=(5x\(^2\)-6x+\(\dfrac{36}{25}\))+\(\dfrac{139}{25}\)
=5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)
Với mọi x thuộc R thì 5\(\left(x-\dfrac{6}{5}\right)^2\)>=0
Suy ra 5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)>0
Hay F >0 với mọi x(đpcm)
G=-x2+5x -6<0 với mọi x
=-(x2-5x+6,25)+0,25
=-(x-2,5)2 +0,25
Với mọi x thuộc R thì -(x-2,5)2 <=0
Suy ra -(x-2,5)2 +0,25<0
Hay G<0 với mọi x (đpcm)
chúc bạn học tốt ạ
1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)
3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0
4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)
5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)
1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)
=> Đpcm
2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)
=> Đpcm
3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)
\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)
\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)
=> Đpcm
4,5 làm tương tự
a) \(-2x^2+2x+1>0\)
\(-\left(2x^2-2x-1\right)>0\)
nhân 2 vế với (-1)=> đổi dấu sao sánh
\(\Leftrightarrow2x^2-2x-1< 0\)
\(\Leftrightarrow x^2-x-\frac{1}{2}< 0\)
\(\Leftrightarrow x^2-2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\frac{1}{4}-\frac{1}{2}< 0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)
ta có \(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi \(x\)
=> \(\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)(đpcm)
b) \(9x^2-6x+2>0\)
<=> \(\left(3x\right)^2-2.3.x+1-1+2>0\)
<=>\(\left(3x-1\right)^2+1>0\)(1)
vì \(\left(3x-1\right)^2\ge0\)với mọi \(x\)=> (1) luôn đúng ( bạn lí giải tương tự như trên nha)
c)\(-4x^2-4x-2< 0\)
\(\Leftrightarrow-\left(4x^2+4x+2\right)< 0\)
nhân 2 vế với (-1)=> đổi dấu so sánh
\(4x^2+4x+2>0\)
\(\Leftrightarrow\left(2x+1\right)^2+1>0\)
lí giải tương tự như trên
=> đpcm
Bài làm:
a) Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\left(\forall x\right)\)
=> đpcm
b) \(x^4+3x^2+3=\left(x^4+3x^2+\frac{9}{4}\right)+\frac{3}{4}=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)
=> đpcm
a) -x2 + 4x - 5 = -x2 + 4x - 4 - 1
= -( x2 - 4x + 4 ) - 1
= -( x - 2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
b) x4 + 3x2 + 3 ( * )
Đặt t = x2
(*) <=> t2 + 3t + 3
<=> ( t2 + 3t + 9/4 ) + 3/4
<=> ( t + 3/2 )2 + 3/4
<=> ( x2 + 3/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
3)
e)
b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3
= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1
= (x-3y)2 + (2x -1)2 + (y-1)2 +1
Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0
(2x -1)2 luôn lớn hơn hoặc bằng 0
(y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0