K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2019

1.

\(\left(x+2\right)^3=\frac{1}{8}\)

\(\Rightarrow\left(x+2\right)^3=\left(\frac{1}{2}\right)^3\)

\(\Rightarrow x+2=\frac{1}{2}\)

\(\Rightarrow x=\frac{1}{2}-2\)

\(\Rightarrow x=-\frac{3}{2}\)

Vậy \(x=-\frac{3}{2}.\)

2.

b) Ta có:

\(5^5-5^4+5^3\)

\(=5^3.\left(5^2-5+1\right)\)

\(=5^3.\left(25-5+1\right)\)

\(=5^3.21\)

\(21⋮7\) nên \(5^3.21⋮7.\)

\(\Rightarrow5^5-5^4+5^3⋮7\left(đpcm\right).\)

c) Ta có:

\(2^{19}+2^{21}+2^{22}\)

\(=2^{19}.\left(1+2^2+2^3\right)\)

\(=2^{19}.\left(1+4+8\right)\)

\(=2^{19}.13\)

\(13⋮13\) nên \(2^{19}.13⋮13.\)

\(\Rightarrow2^{19}+2^{21}+2^{22}⋮13\left(đpcm\right).\)

Chúc bạn học tốt!

7 tháng 11 2019

bạn ơi ko ấy đc câu 2a hả ???

13 tháng 5 2015

là dư 7 đúng đấy ko sai đâu

13 tháng 5 2015

tổng này chia 6 dư 3 cơ bạn ạ

30 tháng 6 2019

điều phải chứng minh

29 tháng 6 2019

Giúp mih với! 😭😭😭

15 tháng 8 2017

Ta có: \(F\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)

+ Với x=0 ta có \(F\left(0\right)=d⋮5\left(1\right)\)

+ Với x=1 ta có \(F\left(1\right)=a+b+c+d⋮5\left(2\right)\)

+ Với x=1 ta có \(F\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)

+ Với x=2 ta có \(F\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)

+ Với x=-2 ta có \(F\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)

Từ (1),(2),(3),(4) và (5) \(\Rightarrow\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)

\(\Rightarrow\left(a+b+c\right)+\left(-a+b-c\right)⋮5\)

\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)

\(\Rightarrow2b⋮5\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)

Từ (1),(2),(4) và (6) \(\)\(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)

\(\Rightarrow\left(8a+8c\right)-\left(8a+2c\right)⋮5\)

\(\Rightarrow6c⋮5\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)

\(\Rightarrow a⋮5\) (vì \(a+c⋮5\)

Vậy \(a,b,c,d⋮5\)