K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DT
1
VM
21 tháng 9 2019
Ta có: \(27^{20}+3^{61}+9^{31}\)
\(=\left(3^3\right)^{20}+3^{61}+\left(3^2\right)^{31}\)
\(=3^{60}+3^{61}+3^{62}\)
\(=3^{60}.\left(1+3+3^2\right)\)
\(=3^{60}.13\)
Vì \(13⋮13\) nên \(3^{60}.13⋮13.\)
\(\Rightarrow27^{20}+3^{61}+9^{31}⋮13\left(đpcm\right).\)
Chúc bạn học tốt!
MN
0
2 tháng 11 2017
Ta có: \(27^{20}+3^{61}+9^{31}\)
\(=\left(3^3\right)^{20}+3^{61}+\left(3^2\right)^{31}\)
\(=3^{60}+3^{61}+3^{62}\)
\(=3^{60}\cdot\left(1+3+3^2\right)\)
\(=3^{60}\cdot13⋮13\)
Vậy....
VT
0
19 tháng 7 2017
2720 + 361 + 931 = [33]20 + 361 + [32]31 = 360 + 361 + 362 = 360[1+3+32] = 360.13 \(⋮13\)
Ta có:
2720 + 361 + 931
= (33)20 + 361 + (32)31
= 360 + 361 + 362
= 360.(1 + 3 + 32)
= 360.(1 + 3 + 9)
= 360.13 chia hết cho 13 (đpcm)