Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(n>2\)
=> \(2^n>2^2=4\) ma 4 > 3
=>\(2^n>3\)
=>\(2^n=\begin{cases}3k+1\\3k+2\end{cases}\)
Neu \(2^n=3k+2\)
=>\(2^n+1=3k+2+1=3k+3⋮3\) ( trai nguoc voi de bai )
=>\(2^n=3k+1\)
=> \(2^n-1=3k+1-1=3k⋮3\)
Vay \(2^n-1\) la hop so
Gọi 2n -1,2n ,2n+1 là 3 số nguyên liên tiếp (n>2)
Ta có 2n-1 là số nguyên tố lớn hơn 3
=>2n-1 không chia hết cho 3
2n không chia hết cho 3 (2n -1,2n ,2n+1 là 3 số nguyên liên tiếp)
=> 2n+1 chia hết cho3 (1)
Vì n>2 => 2 n+1 > 3 (2)
Từ (1) và (2) => 2 n+1 là hợp số(đpcm)
a) A = \(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
Nhân \(\frac{1}{7^2}\)với A .Ta được :
A .\(\frac{1}{7^2}\)= \(\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-...-\frac{1}{7^{98}}+\frac{1}{7^{100}}-\frac{1}{7^{102}}\)
Ta có : \(\frac{1}{7^2}.A+A=\frac{1}{49}-\frac{1}{7^{102}}\)
\(\Rightarrow\frac{50}{49}.A=\frac{1}{49}-\frac{1}{7^{102}}\)
\(\Rightarrow A.\left(\frac{1}{49}-\frac{1}{7^{102}}\right).\frac{49}{50}< \frac{1}{50}\left(đpcm\right)\)
b)Giả sử a1 >a2 > a3 ...> a2015 nên a1 > a2015
Theo đề ra ta có : \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2015}}< \frac{1}{2016}+\frac{1}{2015}+...+1=A\)
A< \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{8}+\left(\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\right)\)có 2007 số \(\frac{1}{8}\)
Mà \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{8}+\left(\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\right)< 1+1+...+\frac{2018}{8}\)
Giả sử trong 2015 số nguyên dương đã cho không có số nào bằng nhau .
Và a1 < a2 < a3 < ... < a2015
Ta có : \(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2015}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2011}}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+1007=1008\)
=> Giả sử là sai => ít nhất 2 trong 2015 số nguyên dương đã cho bằng nhau ( đpcm )