K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

a)  Gọi ƯCLN(3n+1,6n+1)=d

=> 3n+1 và 6n+1 chia hết chưa d

=> 2(3n+1) và 6n+1 chia hết chưa d

=>6n+2 và 6n+1 chia hết cho d

=>(6n+2)-(6n+1)=1 chia hết cho d

=>d=1

=> 3n+1 và 6n+1 nguyên tố cùng nhau

b, Gọi ƯCLN(2n+3,3n+4)=d

=>2n+3 và 3n+4 chia hết cho d

=>3(2n+3) và 2(3n+4) chia hết cho d

=>6n+9 và 6n+8 chia hết cho d

=>(6n+9)-(6n+8)=1 chia hết cho d

=>d=1

=>2n+3 và 3n+4 nguyên tố cùng nhau

24 tháng 12 2020

Gọi d là USC của n+7 và 3n+22 nên

\(n+7⋮d\Rightarrow3\left(n+7\right)=3n+21⋮d\)

\(3n+22⋮d\)

\(\Rightarrow3n+22-\left(3n+21\right)=1⋮d\Rightarrow d=1\)

n+7 và 3n+22 có 1 ước chung duy nhất là 1 nên chúng nguyên tố cùng nhau

5 tháng 1 2016

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn 

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)

24 tháng 12 2016

Giải:

Gọi \(d=UCLN\left(2n+1;3n+1\right)\)

Ta có: \(2n+1⋮d\Rightarrow3\left(2n+1\right)⋮d\Rightarrow6n+3⋮d\)

\(3n+1⋮d\Rightarrow2\left(3n+1\right)⋮d\Rightarrow6n+2⋮d\)

\(\Rightarrow6n+3-6n-2⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow UCLN\left(2n+1;3n+1\right)=1\)

\(\Rightarrow2n+1\) và 3n + 1 là 2 số nguyên tố cùng nhau

Vậy...

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

27 tháng 12 2017

khó quá khó tìm,k đi!!!!!