K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

2. Gọi 4 số TN liên tiếp lần lượt là :a ; a + 1 ; a + 2 ; a + 3 ; a + 4 ( a thuộc N)

Ta có : a + a + 1 + a + 2 + a + 3 + a + 4 = a + a + a + a + 1 + 2 +3 + 4 = 4a + 6

Vì 4a chia hết cho 2 ; 6 chia hết cho 2 nên 4a + 6 chia hết cho 2

Vì 4a chia hết cho 4 ; 6 không chia hết cho 4 nên 4a + 6 không chia hết cho 4

Do đó tổng của 4 số TN liên tiếp chia hết cho 2 nhưng không chia hết cho 22

Do đó tổng của 4 số TN liên tiếp không là số chính Phương

Học tốt 🐱

2 tháng 7 2021

2. 

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 =(  x2 + 3x ) (x2 + 2x + x +2 )  +1 

= (  x2 + 3x ) (x2 +3x + 2 ) +1  (*)

Đặt t = x2 + 3x  thì  (* ) =  t ( t+2 ) + 1=  t2 + 2t +1  =  (t+1) = (x2 + 3x + 1 )2

=>  x (x+1) (x+2 ) (x+3 ) +1  là số chính phương 

hay tích 4 số tự nhiên liên tiếp  cộng  1 là số chính phương 

23 tháng 11

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x

∈ N)

 

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 

 =( x2 + 3x ) (x2 + 2x + x +2 ) +1 

 

= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)

 

Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2

 

=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương 

 

hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương 

26 tháng 10 2021

chịu r

4 tháng 7 2019

Goi 2 số liên tiếp là n và (n + 1)

Tích 2 số đó là: n.(n + 1)

Mà n.n < n. (n + 1) < (n + 1).(n + 1)

Hay n2 < n. (n + 1) < (n + 1)2

=> n.(n + 1) không thể là số chính phương

26 tháng 7 2016

mau lên các bạn!

28 tháng 3 2016

gọi 5 số tự nhiên đó lần lượt là n-2;n-1;n;n+1;n+2

Ta có:

(*) (n-2)2=n(n-2)-2(n-2)=n2-4n+4 (1)

(*)(n-1)2=n(n-1)-1(n-1)=n2-2n+1  (2)

(*)n2=n2                                    (3)

(*)(n+1)2=n(n+1)+1(n+1)=n2+2n+1(4)

(*)(n+2)2=n(n+2)+2(n+2)=n2+4n+4  (5)

Cộng liên tiếp (1);(2);(3);(4);(5)

pt<=>n2-4n+4+n2-2n+1+n2+n2+2n+1+n2+4n+4

=(n2+n2+n2+n2+n2)+(-4n-2n+2n+4n)+(4+1+1+4)

=5n2+10=5(n2+2) chia hết cho 5 nhưng ko chia hết cho 25

=>n2+n ko chia hết cho 5

=>đpcm

28 tháng 3 2016

ta có: n^2 + (n-1)^2 +(n+1)^2 +(n-2)^2 +(n+2)^2 
= n^2 + n^2 - 2n +1+ n^2 +2n+1 +n^2 - 4n+4+ n^2 +4n+4 
= 5n^2 +10 không phải số chính phương 

19 tháng 12 2015

 ta có: (n-1)n(n+1)(n+2) +1=[n(n+1)][(n-1)(n+2)] +1 
=(n^2 +n)(n^2 +n -2) +1 (*) 
Đặt n^2 +n =a 
(*)<=> a(a-2) +1= a^2 -2a+1= (a-1)^2 là số chính phương 
=>điều phải chứng minh 

Tick nha Thanh Nguyễn Vinh

9 tháng 2 2017

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.

9 tháng 2 2017

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.