Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết \(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Khi đó \(\frac{x}{1+x^2}=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}=\frac{\frac{1}{x}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)
Tương tự cho 2 cái còn lại ta có: \(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)
\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)
Suy ra \(VT=\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Đpcm
\(\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\)( Cauchy-Schwarz dạng Engel ) (1)
Lại có \(z\left(x+y\right)\le\left(\frac{x+y+z}{2}\right)^2=9\Rightarrow\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)(2)
Từ (1) và (2) ta có đpcm
Dấu "=" xảy ra <=> x = y = 3/2 ; z = 3
Có \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=xyz+xy+yz+zx+x+y+z+1=1000+1=1001\)
Mà ta có 1001=11.7.13 Ta có x>y>z\(\Rightarrow x+1>y+1>z+1\)
Vậy chỉ có thể +)z+1=1,7 loại z+1=1( vì z=0)
Suy ra y+1=11 và x+1=13
Vậy (x,y,z)=(12,10,6)
câu hỏi đây nhé