\(n\in N^{ },n>1\) Thì

\(S=\frac{3}{4}+\frac{8}{9}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

\(S=1-\frac{1}{4}+1-\frac{1}{9}+......1-\frac{1}{n^2}=n-\left(\frac{1}{4}+\frac{1}{9}+....\frac{1}{n^2}\right)\Rightarrow S< n\)
mặt khác \(S=n-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)>n-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n-1\right)}\right)=n-\left(1-\frac{1}{n}\right)\)
suy ra \(S>n-1+\frac{1}{n}\Rightarrow S>n-1\)
vậy ta có \(n-1< S< n\)nên S không thể là số nguyên.

12 tháng 7 2016

Ta có: 

S=114 +119 +......11n2 =n(14 +19 +....1n2 )S<n
mặt khác S=n(122 +132 +...+1n2 )>n(11.2 +12.3 +...+1n(n1) )=n(11n )
suy ra 

S>n1+1n S>n1
vậy ta có n1<S<nnên S không thể là số nguyên.

 
 
8 tháng 4 2018

Ta có : 

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)

\(S=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)

\(S=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Vì từ \(2\) đến \(n\) có \(n-2+1=n-1\) số \(1\) nên : 
\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\) \(\left(1\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) ta lại có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(A< 1-\frac{1}{n}< 1\)

\(\Rightarrow\)\(S=n-1-A>n-1-1=n-2\) 

\(\Rightarrow\)\(S>n-2\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(n-2< S< n-1\)

Vì \(n>3\) nên \(S\) không là số tự nhiên 

Vậy \(S\) không là số tự nhiên 

Chúc bạn học tốt ~ 

24 tháng 4 2017

de nay kho nhi

3 tháng 5 2017

Bài 2 a:

\(A=n^3+3n^2+2n=n^3+n^2+2n^2+2n=n^2\left(n+1\right)+2n\left(n+1\right)=\left(n^2+2n\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Mà tích 3 số nguyên liên tiếp chia hết cho 3,  suy ra A chia hết cho 3

15 tháng 4 2017

1/

\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}

n-31-12-24-4
n42517-1

Vậy...

15 tháng 4 2017

câu 2 dễ ẹt

20 tháng 2 2018

1) Vì ƯCLN ( n + 5 ; n + 6 ) = 1

2) Gọi ƯCLN ( 3n + 5 ; 4n + 7 ) là d

  => ( 3n + 5 ) \(⋮\)d

        ( 4n + 7 ) \(⋮\)d

=>   4(3n + 5 ) \(⋮\)d

       3 ( 4n + 7 ) \(⋮\)d

=> 12n + 20 \(⋮\)d

     12n + 21 \(⋮\)d

=> d = 1

=>3n+5/4n+7 là phân số tối giản

câu 3 làm tương tự câu 2

            #๖ۣۜβσʂʂ彡

20 tháng 2 2018

Bổ sung câu 1 của Thiên Ân :

Để \(\frac{n+5}{n+6}\)là phân số tối giản 

=> ƯCLN ( n + 5 ; n + 6 ) = 1

Gọi ƯCLN ( n + 5 ; n + 6 ) = d

=> n + 5 \(⋮\)d và n + 6  \(⋮\)d  ( 1 )

Từ 1 

=> ( n + 6 ) - ( n + 5 )  \(⋮\)

=> 1  \(⋮\)d  

=> d \(\in\)Ư ( 1 )

=> d = 1

=>  \(\frac{n+5}{n+6}\)là phân số tối giản => đpcm

30 tháng 3 2017

Khó dữ vậy!!!!

6 tháng 5 2017

Đợi tí , mạng chậm