\(B=\dfrac{n^4}{24} +\dfrac{n^3}{4}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2018

\(B=\frac{n^4}{24}+\frac{n^3}{4}+\frac{11n^2}{24}+\frac{n}{4}\)

\(B=\frac{n^4+6n^3+11n^2+6n}{24}\)

\(B=\frac{n^4+2n^3+4n^3+8n^2+3n^2+6n}{24}\)

\(B=\frac{n^3\left(n+2\right)+4n^2\left(n+2\right)+3n\left(n+2\right)}{24}\)

\(B=\frac{\left(n^3+n^2+3n^2+3n\right)\left(n+2\right)}{24}\)

\(B=\frac{n\left(n+1\right)\left(n+3\right)\left(n+2\right)}{24}\)

Lập luận là ra

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Câu A:

Ta có:
\(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}=\frac{2n}{6}+\frac{3n^2}{6}+\frac{n^3}{6}\)

\(=\frac{2n+3n^2+n^3}{6}\)

Xét tử : \(2n+3n^2+n^3=n(n^2+3n+2)=n(n^2+n+2n+2)\)

\(=n[n(n+1)+2(n+1)]=n(n+1)(n+2)\)

\(n(n+1)(n+2)\) là tích của 3 số nguyên liên tiếp nên \(n(n+1)(n+2)\vdots 3\)

Vì $n(n+1)$ là tích của 2 số nguyên liên tiếp nên \(n(n+1)\vdots 2\)

\(\Rightarrow n(n+1)(n+2)\vdots 2\)

\((2,3)=1\Rightarrow n(n+1)(n+2)\vdots (2.3=6)\)

Do đó: \(A=\frac{n(n+1)(n+2)}{6}\in\mathbb{Z}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Câu B:

Ta có:

\(B=\frac{n^4}{24}+\frac{6n^3}{24}+\frac{11n^2}{24}+\frac{6n}{24}\)\(=\frac{n^4+6n^3+11n^2+6n}{24}\)

Xét mẫu:

\(n^4+6n^3+11n^2+6n=n(n^3+6n^2+11n+6)\)

\(=n[n^2(n+1)+5n(n+1)+6(n+1)]\)

\(=n(n+1)(n^2+5n+6)=n(n+1)[n^2+2n+3n+6]\)

\(=n(n+1)[n(n+2)+3(n+2)]\)

\(=n(n+1)(n+2)(n+3)\)

Vì $n(n+1)(n+2)$ là tích 3 số nguyên liên tiếp nên \(n(n+1)(n+2)\vdots 3\)

\(\Rightarrow n(n+1)(n+2)(n+3)\vdots 3\)

Vì $n,n+1,n+2,n+3$ là 4 số nguyên liên tiếp nên trong đó chắc chắn có một số chia $4$ dư $2$ , một số chia hết cho $4$

\(\Rightarrow n(n+1)(n+2)(n+3)\vdots (2.4=8)\)

Mà $(3,8)=1$ nên \(n(n+1)(n+2)(n+3)\vdots (8.3=24)\)

Do đó: \(B=\frac{n(n+1)(n+2)(n+3)}{24}\in\mathbb{Z}\) (đpcm)

10 tháng 1 2018

\(A=\dfrac{n^5}{120}+\dfrac{n^4}{12}+\dfrac{7n^3}{24}+\dfrac{5n^2}{12}+\dfrac{n}{5}\)

\(=\dfrac{n^5}{120}+\dfrac{10n^4}{120}+\dfrac{35n^3}{120}+\dfrac{50n^2}{120}+\dfrac{24n}{120}\)

\(=\dfrac{n^5+10n^4+35n^3+50n^2+24n}{120}\)

\(=\dfrac{n\left(n^4+10n^3+35n^2+50n+24\right)}{120}\)

\(=\dfrac{n\left(n^4+n^3+9n^3+9n^2+26n^2+26n+24n+24\right)}{120}\)

\(=\dfrac{n\left[n^3\left(n+1\right)+9n^2\left(n+1\right)+26n\left(n+1\right)+24\left(n+1\right)\right]}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n^3+9n^2+26n+24\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n^3+2n^2+7n^2+14n+12n+24\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left[n^2\left(n+2\right)+7n\left(n+2\right)+12\left(n+2\right)\right]}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n^2+7n+12\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n^2+3n+4n+12\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left[n\left(n+3\right)+4\left(n+3\right)\right]}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}{120}\)

Để A có giá trị nguyên thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

Thật vậy, vì A là tích của 5 số tự nhiên liên tiếp nên trong 5 số đó có 2 số chẵn liên tiếp (tích chia hết cho 8),1 số chia hết cho 3, 1 số chia hết cho 5

mà 8, 3, 5 đôi một nguyên tố cùng nhau nên \(A=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)⋮8.3.5=120\)

Vậy A có giá trị nguyên với mọi n \(\in\) N.

Bài 1: 

a: Để M>1 thì M-1>0

\(\Leftrightarrow\dfrac{x+4-x+4}{x-4}>0\)

=>x-4>0

hay x>4

Để M<2 thì M-2<0

\(\Leftrightarrow\dfrac{x+4-2x+8}{x-4}< 0\)

\(\Leftrightarrow-\dfrac{x-12}{x-4}< 0\)

=>x>12 hoặc x<4

b: Để M là số nguyên thì \(x-4+8⋮x-4\)

\(\Leftrightarrow x-4\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

hay \(x\in\left\{5;3;6;2;8;0;12;-4\right\}\)

8 tháng 5 2018

a/ Để A ∈ Z

\(3x^2-9x+2\)\(x-3\)

\(3x\left(x-3\right)+2\)\(x-3\)

\(3x\left(x-3\right)\)\(x-3\)

\(2\)\(x-3\)

\(x-3\inƯ_{\left(2\right)}\)

\(x-3\in\left\{1;2;-1;-2\right\}\)

\(x\in\left\{4;5;2;1\right\}\)

Vậy ...

8 tháng 5 2018

b.

Ta có:

\(A=\dfrac{3n+9}{n-4}=\dfrac{3\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)

Để A thuộc Z

=> \(\dfrac{21}{n-4}\in Z\) ( n khác 4)

=> \(21⋮\left(n-4\right)\)

\(\Rightarrow n-4\inƯ\left(21\right)=\left\{21;-21;7;-7;3;-3\right\}\)

\(\Rightarrow n\in\left\{25;-17;11;-3;-1;1\right\}\) ( nhận)

a: \(A=\dfrac{4x\left(2-x\right)+8x^2}{\left(2+x\right)\left(2-x\right)}:\dfrac{x-1-2x+4}{x\left(x-2\right)}\)

\(=\dfrac{8x-4x^2+8x^2}{\left(x+2\right)\cdot\left(-1\right)\cdot\left(x-2\right)}\cdot\dfrac{x\left(x-2\right)}{-x+3}\)

\(=\dfrac{8x+4x^2}{\left(x+2\right)\cdot\left(-1\right)}\cdot\dfrac{x}{-x+3}\)

\(=\dfrac{4x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}\cdot x=\dfrac{4x^2}{x+3}\)

b: \(=\left(n^2+3n+1+1\right)\left(n^2+3n+1-1\right)\)

\(=\left(n^2+3n+2\right)\left(n^2+3n\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮4!=24\)

25 tháng 1 2017

a) 0,5(2y-1) - (0,5-0,2y) + 1 = 0

\(\Leftrightarrow\) y - 0,5 - 0,5 + 0,2y + 1 = 0

\(\Leftrightarrow\) 1,2y - 1 + 1 = 0

\(\Leftrightarrow\) 1,2y = 0

\(\Leftrightarrow\) y = \(\frac{0}{1,2}\)= 0

Vậy y = 0

b) 3(3x-1) + 2 = 5(1-2x) - 1

\(\Leftrightarrow\) 9x - 3 + 2 = 5 - 10x - 1

\(\Leftrightarrow\) 9x + 10x = 5 -1 + 3 -2

\(\Leftrightarrow\) 19x = 5

\(\Leftrightarrow\) x = \(\frac{5}{19}\)

Vậy x = \(\frac{5}{19}\)

c) \(\frac{3x-1}{24}\)- \(\frac{2x+6}{36}\)- 1 = 0

\(\Leftrightarrow\) 3(3x-1) - 2(2x+6) -1.72 = 0

\(\Leftrightarrow\) 9x - 3 - 4x - 12 - 72 = 0

\(\Leftrightarrow\) 5x - 87 = 0

\(\Leftrightarrow\) 5x = 87

\(\Leftrightarrow\) x = \(\frac{87}{5}\)

Vậy x = \(\frac{87}{5}\)

d) \(\frac{11a-4}{7}\)- \(\frac{a-9}{2}\)= 5

\(\Leftrightarrow\) 2(11a-4) - 7(a-9) = 5

\(\Leftrightarrow\) 22a -8 -7a +63 = 5

\(\Leftrightarrow\) 15a + 55 = 5

\(\Leftrightarrow\) 15a = 5 - 55 = -50

\(\Leftrightarrow\) a = \(\frac{-50}{15}\)= \(\frac{-10}{3}\)

Vậy a = \(\frac{-10}{3}\)có vẻ như bạn viết sai đề rồi !

25 tháng 1 2017

a )

0,5(2y-1) - ( 0,5- 0,2y) + 1 = 0
<=> y-0,5 - 0,5+0.2y+1=0
<=> y+0,2y=0,5+0,5-1
<=>1,2y=0
<=> y=0
b) 3(3x-1) + 2= 5(1-2x)-1
<=> 9x-3+2=5-10x-1
<=> 9x+10x = 3-2+5-1
<=> 19x = 5
<=> x = 5/19

c) (3x−1)/24 ) - 2x+6/36 - 1 = 0

<=> 9x - 3-4x-12-72 =0

<=> 9x-4x = 3+12+72

<=> 5x = 87 => x = 17,4

d ) (11a-4)/7 -( a-9)/2=5

<=> (11a-4)2 - (a-9)7=5.14

<=> 22a-8 - 7a +63 = 70

<=> 22a-7a = 8-63+70

<=> 15a = 15

<=> a = 1

22 tháng 11 2018

a) Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)

Ta có:

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}\)

\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}+1\)

\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\)

\(\Rightarrow\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)< \dfrac{1}{2^2}\left(2-\dfrac{1}{2}\right)\)

\(\Rightarrow A< \dfrac{1}{2^2}.2-\dfrac{1}{2^2}.\dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{2^3}< \dfrac{1}{2}\)

Vậy \(A< \dfrac{1}{2}\left(Đpcm\right)\)

b) Đặt \(B=\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{\left(2n+1\right)^2}\)

Ta có:

\(B< \dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(B< \dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)

\(B< \dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}\left(\dfrac{2n+1}{2n+1}-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}.\dfrac{2n}{2n+1}\)

\(B< \dfrac{2n}{4n+2}\)

\(B< \dfrac{2n}{2\left(2n+1\right)}\)

\(B< \dfrac{n}{2n+1}\)