K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2018

\(B=\frac{n^4}{24}+\frac{n^3}{4}+\frac{11n^2}{24}+\frac{n}{4}\)

\(B=\frac{n^4+6n^3+11n^2+6n}{24}\)

\(B=\frac{n^4+2n^3+4n^3+8n^2+3n^2+6n}{24}\)

\(B=\frac{n^3\left(n+2\right)+4n^2\left(n+2\right)+3n\left(n+2\right)}{24}\)

\(B=\frac{\left(n^3+n^2+3n^2+3n\right)\left(n+2\right)}{24}\)

\(B=\frac{n\left(n+1\right)\left(n+3\right)\left(n+2\right)}{24}\)

Lập luận là ra

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Câu A:

Ta có:
\(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}=\frac{2n}{6}+\frac{3n^2}{6}+\frac{n^3}{6}\)

\(=\frac{2n+3n^2+n^3}{6}\)

Xét tử : \(2n+3n^2+n^3=n(n^2+3n+2)=n(n^2+n+2n+2)\)

\(=n[n(n+1)+2(n+1)]=n(n+1)(n+2)\)

\(n(n+1)(n+2)\) là tích của 3 số nguyên liên tiếp nên \(n(n+1)(n+2)\vdots 3\)

Vì $n(n+1)$ là tích của 2 số nguyên liên tiếp nên \(n(n+1)\vdots 2\)

\(\Rightarrow n(n+1)(n+2)\vdots 2\)

\((2,3)=1\Rightarrow n(n+1)(n+2)\vdots (2.3=6)\)

Do đó: \(A=\frac{n(n+1)(n+2)}{6}\in\mathbb{Z}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Câu B:

Ta có:

\(B=\frac{n^4}{24}+\frac{6n^3}{24}+\frac{11n^2}{24}+\frac{6n}{24}\)\(=\frac{n^4+6n^3+11n^2+6n}{24}\)

Xét mẫu:

\(n^4+6n^3+11n^2+6n=n(n^3+6n^2+11n+6)\)

\(=n[n^2(n+1)+5n(n+1)+6(n+1)]\)

\(=n(n+1)(n^2+5n+6)=n(n+1)[n^2+2n+3n+6]\)

\(=n(n+1)[n(n+2)+3(n+2)]\)

\(=n(n+1)(n+2)(n+3)\)

Vì $n(n+1)(n+2)$ là tích 3 số nguyên liên tiếp nên \(n(n+1)(n+2)\vdots 3\)

\(\Rightarrow n(n+1)(n+2)(n+3)\vdots 3\)

Vì $n,n+1,n+2,n+3$ là 4 số nguyên liên tiếp nên trong đó chắc chắn có một số chia $4$ dư $2$ , một số chia hết cho $4$

\(\Rightarrow n(n+1)(n+2)(n+3)\vdots (2.4=8)\)

Mà $(3,8)=1$ nên \(n(n+1)(n+2)(n+3)\vdots (8.3=24)\)

Do đó: \(B=\frac{n(n+1)(n+2)(n+3)}{24}\in\mathbb{Z}\) (đpcm)

24 tháng 2 2021

`A=n/3+n^2/2+n^3/6`

`=(n^3+3n^2+2n)/6`

`=(n(n^2+3n+2))/6`

`=(n(n+1)(n+2))/6`

Vì `n(n+1)(n+2)` là tích 3 số nguyên liên tiếp

`=>n(n+1)(n+2) vdots 6`

`=>(n(n+1)(n+2))/6 in Z(forall x in Z)`

10 tháng 1 2018

\(A=\dfrac{n^5}{120}+\dfrac{n^4}{12}+\dfrac{7n^3}{24}+\dfrac{5n^2}{12}+\dfrac{n}{5}\)

\(=\dfrac{n^5}{120}+\dfrac{10n^4}{120}+\dfrac{35n^3}{120}+\dfrac{50n^2}{120}+\dfrac{24n}{120}\)

\(=\dfrac{n^5+10n^4+35n^3+50n^2+24n}{120}\)

\(=\dfrac{n\left(n^4+10n^3+35n^2+50n+24\right)}{120}\)

\(=\dfrac{n\left(n^4+n^3+9n^3+9n^2+26n^2+26n+24n+24\right)}{120}\)

\(=\dfrac{n\left[n^3\left(n+1\right)+9n^2\left(n+1\right)+26n\left(n+1\right)+24\left(n+1\right)\right]}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n^3+9n^2+26n+24\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n^3+2n^2+7n^2+14n+12n+24\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left[n^2\left(n+2\right)+7n\left(n+2\right)+12\left(n+2\right)\right]}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n^2+7n+12\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n^2+3n+4n+12\right)}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left[n\left(n+3\right)+4\left(n+3\right)\right]}{120}\)

\(=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}{120}\)

Để A có giá trị nguyên thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

Thật vậy, vì A là tích của 5 số tự nhiên liên tiếp nên trong 5 số đó có 2 số chẵn liên tiếp (tích chia hết cho 8),1 số chia hết cho 3, 1 số chia hết cho 5

mà 8, 3, 5 đôi một nguyên tố cùng nhau nên \(A=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)⋮8.3.5=120\)

Vậy A có giá trị nguyên với mọi n \(\in\) N.

8 tháng 5 2018

a/ Để A ∈ Z

\(3x^2-9x+2\)\(x-3\)

\(3x\left(x-3\right)+2\)\(x-3\)

\(3x\left(x-3\right)\)\(x-3\)

\(2\)\(x-3\)

\(x-3\inƯ_{\left(2\right)}\)

\(x-3\in\left\{1;2;-1;-2\right\}\)

\(x\in\left\{4;5;2;1\right\}\)

Vậy ...

8 tháng 5 2018

b.

Ta có:

\(A=\dfrac{3n+9}{n-4}=\dfrac{3\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)

Để A thuộc Z

=> \(\dfrac{21}{n-4}\in Z\) ( n khác 4)

=> \(21⋮\left(n-4\right)\)

\(\Rightarrow n-4\inƯ\left(21\right)=\left\{21;-21;7;-7;3;-3\right\}\)

\(\Rightarrow n\in\left\{25;-17;11;-3;-1;1\right\}\) ( nhận)

Bài 1: 

a: Để M>1 thì M-1>0

\(\Leftrightarrow\dfrac{x+4-x+4}{x-4}>0\)

=>x-4>0

hay x>4

Để M<2 thì M-2<0

\(\Leftrightarrow\dfrac{x+4-2x+8}{x-4}< 0\)

\(\Leftrightarrow-\dfrac{x-12}{x-4}< 0\)

=>x>12 hoặc x<4

b: Để M là số nguyên thì \(x-4+8⋮x-4\)

\(\Leftrightarrow x-4\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

hay \(x\in\left\{5;3;6;2;8;0;12;-4\right\}\)

2 tháng 4 2022

2.

\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)

\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)

*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)

*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)

\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)

\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)

\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)

\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)

-Vậy \(n=1\)

 

 

2 tháng 4 2022

1. \(x^2+y^2=z^2\)

\(\Rightarrow x^2+y^2-z^2=0\)

\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)

-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.

\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.

-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.

*Xét \(\left(x-z\right)⋮2\):

\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.

*Xét \(\left(x+z\right)⋮2\):

\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.