K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2023

Đặt \(P\left(n\right)=3.7^{2n+1}+6.2^{2n+2}\)

Ta thấy \(P\left(0\right)=45⋮45\), luôn đúng.

Giả sử khẳng định đúng đến \(n=k\), khi đó \(P\left(k\right)=3.7^{2k+1}+6.2^{2n+2}⋮45\). Ta cần chứng minh khẳng định đúng với \(n=k+1\). Thật vậy:

\(P\left(k+1\right)=3.7^{2\left(k+1\right)+1}+6.2^{2\left(k+1\right)+2}\)

\(=3.7^{2k+3}+6.2^{2k+4}\)

\(=49.3.7^{2k+1}+4.6.2^{2k+2}\)

\(=4\left(3.7^{2k+1}+6.2^{2k+2}\right)+45.3.7^{2k+1}\)

Hiển nhiên \(45.3.7^{2k+1}⋮45\). Lại có \(4\left(3.7^{2k+1}+6.2^{2k+2}\right)\) theo giả thiết quy nạp nên suy ra \(P\left(k+1\right)⋮45\), suy ra khẳng định đúng với mọi \(n\inℕ\). Ta có đpcm

18 tháng 1 2018

Xét n=0 => 62n+1 + 5n+2  = 31chia hết 31

Xét n=1 => 62n+1 + 5n+2  = 341 chia hết 31

Giả sử mệnh đề đúng với n = k,tức là có 62k+1 + 5k + 2,ta sẽ chứng minh mệnh đề đúng với n = k+1 tức là chứng minh 62k+3  + 5k+3

Ta có 62k+1 + 5k+2  = 36k .6+5k .25 chia hết 31

<=> 62k+3  + 5k+3 = 36k .216+5k .125

Xét hiệu : 62k+3  + 5k+3 − 62k+1  − 5k+2  = 36k .216+5k .125−36k .6−5k .25

= 36k .210+5k .100 = 36k .207+5k .93−7(36k−5k ) Có 217 chia hết 31, 93 chia hết 31và 36k−5k  chia hết 36 - 5 = 31

=> 62n+3  + 5k+3  − 62k+1 − 5k+2  chia hết 31

. Mà 62k+1  + 5k+2  chia hết 31 nên 62k+3 + 5k+3  chia hết 31

Phép quy nạp được chứng minh hoàn toàn,ta có đpcm 

:D

18 tháng 1 2018

Ta có: \(6^2\equiv5\left(mod31\right)\)

\(\Rightarrow6^{2n}\equiv5^n\left(mod31\right)\)

\(6^{2n+1}\equiv6.5^n\left(mod31\right)\)

Lại có: 5\(5\equiv5\left(mod31\right)\)

\(\Rightarrow5^n\equiv5^n\left(mod31\right)\)

\(\Rightarrow5^{n+2}\equiv25.5^n\left(mod31\right)\)

\(\Rightarrow6^{2n+1}+5^{n+2}\equiv31.5^n\left(mod31\right)\)

\(\Rightarrow6^{2n+1}+5^{n+2}⋮31\)

NM
22 tháng 7 2021

ta có

\(2n^2\left(n+1\right)-2n^2\left(n^2+n-3\right)=2n^2\left(4-n^2\right)=2n^2\left(2-n\right)\left(2+n\right)\)

nhận thấy \(n-2,n,n+2\)là ba số chẵn liên tiếp hoặc 3 số lẻ liên tiếp

do đó tích \(n^2\left(2-n\right)\left(2+n\right)\text{ chia hết cho 3 với mọi n}\)

hay \(2n^2\left(2-n\right)\left(2+n\right)\text{ chia hết cho 6 với mọi n}\)

10 tháng 8 2018

a) ta có: 3n + 2 chia hết cho n - 1

=> 3n - 3 + 5 chia hết cho n -1

3.(n-1) + 5 chia hết cho n - 1

mà 3.(n-1) chia hết cho n -1

=> 5 chia hết cho n - 1

=> n - 1 thuộc Ư(5)={1;-1;5;-5}

...

rùi bn tự lập bảng xét giá trị hộ mk nha!!!

b) ta có: n^2 + 2n + 7 chia hết cho n + 2

=> n.(n+2) + 7 chia hết cho n + 2

mà n.(n+2) chia hết cho n + 2

=> 7 chia hết cho n + 2

=>...

c) ta có: n^2 + 1 chia hết cho n - 1

=> n^2 - n + n -1 + 2 chia hết cho n - 1

n.(n-1) + (n-1) + 2 chia hết cho n -1

(n-1).(n+1) + 2 chia hết cho n - 1

mà (n-1).(n+1) chia hết cho n - 1

=> 2 chia hết cho n - 1

...

câu e;g bn dựa vào phần a mak lm nha!!!

\(d,n+8⋮n+3\)

\(\Leftrightarrow\left(n+3\right)+5⋮n+3\)

\(\Leftrightarrow n+3⋮n+3\Rightarrow5⋮n+3\)

\(\Leftrightarrow n+3\in\left(1;5\right)\)

\(\Leftrightarrow n+3=1\Rightarrow n=-2\left(l\right)\)

\(\Leftrightarrow n+3=5\Rightarrow n=2\left(c\right)\)

22 tháng 9 2016

\(A=\left(2n\right)^3+\left(3n^2\right)+n\)

\(A=n\left(2n^2+3n+1\right)\)

\(A=n\left[\left(n^2+2n+1\right)+\left(n^2+n\right)\right]\)

\(A=n\left[\left(n+1\right)^2+n\left(n+1\right)\right]\)

\(A=n\left(n+1\right)\left(2n+1\right)\)

Ta có : A luôn chia hết cho 2 vì n ( n + 1) chia hết cho 2
Khi n = 3k suy ra n chia hết cho 3 
Suy ra A chia hết cho 3
Khi n = 3k + 1 
Khi đó :2n + 1 = 6k + 2 + 1 = 6k + 3 = 3(2k + 1) chia hết cho 3 
Khi n = 3k + 2
Khi đó n + 1 = 3k + 3 = 3(k + 1) chia hết cho 3
Suy ra: A chia hết cho 2 và A chia hết cho 3
Vậy A chia hết cho 6