\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

Bài 1

a > 0

\(a^2=3+\sqrt{5+2\sqrt{3}}+3-\sqrt{5+2\sqrt{3}}\) \(+2\sqrt{3^2-\left(5+2\sqrt{3}\right)}\)

= \(6+2\sqrt{4-2\sqrt{3}}=6+2\left(\sqrt{3}-1\right)=4+2\sqrt{3}\) = \(\left(\sqrt{3}+1\right)^2\)

=> a = \(\sqrt{3}+1\)

Thay vào : a2 -2a - 2 = \(4+2\sqrt{3}-2\left(\sqrt{3}+1\right)-2=0\) (đpcm)

6 tháng 7 2017

Ta có :

\(\hept{\begin{cases}\frac{1}{2\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\\\sqrt{n+1}-\sqrt{n}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}\end{cases}}\forall n\in N\)

Suy ra : \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)

Đặt \(M=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2499}}+\frac{1}{\sqrt{2500}}\)

\(\Leftrightarrow\frac{1}{2}M=\frac{1}{2\sqrt{2500}}+\frac{1}{2\sqrt{2499}}+...+\frac{1}{2\sqrt{3}}+\frac{1}{2\sqrt{2}}+\frac{1}{2}\)

Áp dụng BĐT , ta có :

\(\frac{1}{2}M< \sqrt{2500}-\sqrt{2499}+\sqrt{2499}-\sqrt{2498}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}M< \sqrt{2500}-\sqrt{1}+\frac{1}{2}=50-\frac{1}{2}< 50\)

\(\Rightarrow M< 100\)

6 tháng 8 2017

\(\frac{A}{\sqrt{2}}=\frac{1+\sqrt{7}}{2+\sqrt{8+2\sqrt{7}}}+\frac{1-\sqrt{7}}{2-\sqrt{8-2\sqrt{7}}}\)

         \(=\frac{1+\sqrt{7}}{2+1+\sqrt{7}}+\frac{1-\sqrt{7}}{2-\sqrt{7}+1}\)

            \(=\frac{1+\sqrt{7}}{3+\sqrt{7}}+\frac{1-\sqrt{7}}{3-\sqrt{7}}\)

           =\(\frac{\left(1+\sqrt{7}\right)\left(3-\sqrt{7}\right)+\left(1-\sqrt{7}\right)\left(3+\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)

          \(=\frac{-8}{2}=-4\)

\(\Rightarrow A=-4\sqrt{2}\)

NV
12 tháng 10 2020

\(A=\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

\(=\sqrt{100}-1=9\)

\(B=\frac{2}{2}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{35}}\)

\(B>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{35}+\sqrt{36}}\)

\(B>2\left(\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+...+\frac{\sqrt{36}-\sqrt{35}}{\left(\sqrt{36}-\sqrt{35}\right)\left(\sqrt{36}+\sqrt{35}\right)}\right)\)

\(B>2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{36}-\sqrt{35}\right)\)

\(B>2\left(\sqrt{36}-1\right)=10>9=A\)

\(\Rightarrow B>A\)

NV
12 tháng 10 2020

Để biểu thức B có nghĩa thì \(xy\ne0\)

Khi đó ta có:

\(x^3+y^3=2x^2y^2\)

\(\Leftrightarrow\left(x^3+y^3\right)^2=4x^4y^4\)

\(\Leftrightarrow x^6+y^6+2x^3y^3=4x^4y^4\)

\(\Leftrightarrow x^6+y^6-2x^3y^3=4x^4y^4-4x^3y^3\)

\(\Leftrightarrow\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)

\(\Leftrightarrow1-\frac{1}{xy}=\left(\frac{x^3-y^3}{2x^2y^2}\right)^2\)

\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\left|\frac{x^3-y^3}{2x^2y^2}\right|\) là một số hữu tỉ

10 tháng 10 2016

ta thấy \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>...>\frac{1}{\sqrt{n}}\)nên \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}\)>\(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}\)=\(\frac{n}{\sqrt{n}}=\sqrt{n}\)

với mọi k thuộc N ta luôn có 

\(\frac{1}{\sqrt{k}}=\frac{2}{\sqrt{k}+\sqrt{k}}< \frac{2}{\sqrt{k}+\sqrt{k-1}}\)=\(\frac{2\left(\sqrt{k}-\sqrt{k-1}\right)}{k-k+1}=2\left(\sqrt{k}-\sqrt{k-1}\right)\)

áp dụng tính chất này ta có

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}\)<2(\(\sqrt{1}-\sqrt{0}+\sqrt{2}-\sqrt{1}\)+...+\(\sqrt{n}-\sqrt{n-1}\))=\(2\left(\sqrt{n}-\sqrt{0}\right)=2\sqrt{n}\)

29 tháng 8 2019

a, ĐKXĐ : \(\left[{}\begin{matrix}x\ge0\\ y>0\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x>0\\y\ge0\end{matrix}\right.\)

Ta có :\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\sqrt{x^2}\sqrt{x}+\sqrt{y^2}\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)

= \(\left(x-\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\)

= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

= \(\sqrt{xy}\)

29 tháng 8 2019

\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) \(=\sqrt{\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{b}+1\right)\left(\sqrt{b}-1\right)}}\)\(=\sqrt{\frac{a^2-1}{b^2-1}}\) (*)

Thay a=7,25 và b= 3,25 vào (*) ta có:

\(\sqrt{\frac{7,25^2-1}{3,25^2-1}}\) \(=\frac{5\sqrt{33}}{4}:\frac{3\sqrt{17}}{4}=\frac{5\sqrt{33}}{3\sqrt{17}}=\frac{5\sqrt{561}}{51}\)