Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt n2+3n+5 = (*)
Giả sử n=1 => (*) <=> 12+3.1+5 không chia hết cho 121 ( đúng )
Vậy với n=1 đúng
Giả sử (*) đúng với n=k
=> (*) <=> k2+3k+5
Ta cần c/m (*) đúng với n = k+1
Thật vậy với n= k+1
=> (*) <=> (k+1)2+3(k+1)+5
tự viết tiếp
Gọi UCLN(n+1,2n+3) = d
=> n + 1 chia hết cho d => 2(n + 1) chia hết cho d => 2n + 2 chia hết cho d
2n + 3 chia hết cho d
=> 2n + 3 - (2n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> UCLN(n+1,2n+3) = 1
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản
Gọi UCLN(2n+1,2n+3) = d
=> 2n+1 chia hết cho d
2n+3 chia hết cho d
=> 2n+3 - (2n+1) chia hết cho d
=> 2 chia hết cho d
=> d \(\in\){1;2}
Vì 2n+1 lẻ nên d = 1
=>UCLN(2n+1,2n+3) = 1
Vậy \(\frac{2n+1}{2n+3}\) là phân số tối giản
Đặt A là tập hợp giá trị của n trong \(\frac{-12}{n}\)
\(\frac{-12}{n}\)là số nguyên => \(n\inƯ\left(-12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
=> \(A=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Đặt B là tập hợp giá trị của n trong \(\frac{15}{n-2}\)
\(\frac{15}{n-2}\)là số nguyên => \(n-2\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
=> \(n\in\left\{3;1;5;-1;7;-3;17;-13\right\}\)
=> \(B=\left\{3;1;5;-1;7;-3;17;-13\right\}\)
Đặt C là tập hợp giá trị của n trong \(\frac{8}{n+1}\)
\(\frac{8}{n+1}\)là số nguyên => \(n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
=> \(n\in\left\{0;-2;1;-3;3;-5;7;-9\right\}\)
=> A B C = -3 ; 3
=> n = -3 hoặc n = 3 thì ba phân số đều có giá trị nguyên
a: Để A là số nguyên thì \(n+1-4⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
b: Để B là số nguyên thì \(2n+4-7⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-1;-3;5;-9\right\}\)
c: Để C là số nguyên thì \(2n-2+5⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
d: Để D là số nguyên thì \(-n-2+7⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-1;-3;5;-9\right\}\)
Ta thấy : 2n-1; 2n;2n+1 là 3 số tự nhiên liên tiếp nên tồn tại một số chia hết cho 3
Mà 2n không chia hết cho 3( vì 2 không chia hết cho 3)
=>hoặc 2n+1 hoặc 2n-1 chia hết cho 3
=>hoặc 2n+1 hoặc 2n-1 là hợp số
=>2n+1 và 2n-1 không thể đồng thời là 2 số nguyên tố