Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: \(A=9^n\cdot81-9^n+3^n\cdot9+3^n\)
\(=9^n\cdot80+3^n\cdot10\)
\(=10\left(9^n\cdot8+3^n\right)⋮10\)
\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+.....+\frac{n^2-1}{n^2}\)
\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+....+\frac{n^2-1}{n^2}\)
\(=\left(1+1+1+....+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{n^2}\right)\)
\(=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{4^2}\right)\)
Mà \(0< \frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{4^2}< 1\) ( không biết chứng minh thì ib )
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{4^2}\) không là số nguyên => đpcm
= \(49-\left(\dfrac{1}{2}-\dfrac{1}{51}\right)=\dfrac{4949}{102}\notin N\)
Vậy \(S\notin N\)
\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>49-1\)\(S=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\)
\(\Rightarrow S=1-\dfrac{1}{4}+1-\dfrac{1}{9}+1-\dfrac{1}{16}+...+1-\dfrac{1}{2500}\)
\(\Rightarrow S=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+1-\dfrac{1}{4^2}+...+1-\dfrac{1}{50^2}\)
\(\Rightarrow S=\left(1+1+...+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)
Từ 2-50 có 49 số nên có 49 số 1
\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)< 49\)
Nhận xét: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{50^2}< \dfrac{1}{49.50}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...-\dfrac{1}{50}=1-\dfrac{1}{50}< 1\)
\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)>-1\)
\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>49-1\)
\(\Rightarrow S=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>48\) (2)
Từ (1) và (2) \(\Rightarrow48< S< 49\)
Vậy \(S\notin N\)
a) 162n=2 => \(\dfrac{2^4}{2^n}=2\Rightarrow2^{4-n}=2\Rightarrow4-n=1\Rightarrow n=3\)
b,
\(\dfrac{\left(-3\right)^n}{81}=-27\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^4}=-27\Rightarrow\left(-3\right)^{n-4}=\left(-3\right)^3\Rightarrow n-4=3\Rightarrow n=7\)
c,\(8^n:2^n=4\Rightarrow4^n=4\Rightarrow n=1\)
=> (-3)n-4 = (-3)3
=> n - 4 = 3 => n = 7
c) 8n : 2n = 4
4n = 4.
Bài 1.
Giải
a) Ta có: \(A=\dfrac{3n+9}{n-4}=\dfrac{3n-12+21}{n-4}=\dfrac{3\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)
Để \(A\in Z\) thì \(\dfrac{21}{n-4}\in Z\)
\(\Rightarrow21⋮\left(n-4\right)\)
\(\Rightarrow\left(n-4\right)\inƯ\left(21\right)\)
\(\Rightarrow\left(n-4\right)\in\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Ta có bẳng sau:
\(n-4\) | \(-21\) | \(-7\) | \(-3\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(21\) |
\(n\) | \(-17\) | \(-3\) | \(1\) | \(3\) | \(5\) | \(7\) | \(11\) | \(25\) |
Vậy \(n\in\left\{-17;-3;1;3;5;7;11;25\right\}\) thì \(A\in Z.\)
b) Ta có: \(B=\dfrac{6n+5}{2n-1}=\dfrac{6n-3+8}{2n-1}=\dfrac{3\left(2n-1\right)+8}{2n-1}=3+\dfrac{8}{2n-1}\)
Để \(B\in Z\) thì \(\dfrac{8}{2n-1}\in Z\)
\(\Rightarrow8⋮\left(2n-1\right)\)
\(\Rightarrow\left(2n-1\right)\inƯ\left(8\right)\)
\(\Rightarrow\left(2n-1\right)\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng sau:
\(2n-1\) | \(-8\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) |
\(2n\) | \(-7\) | \(-3\) | \(-1\) | \(0\) | \(2\) | \(3\) | \(5\) | \(9\) |
\(n\) | \(\dfrac{-7}{2}\) | \(\dfrac{-3}{2}\) | \(\dfrac{-1}{2}\) | \(0\) | \(1\) | \(\dfrac{3}{2}\) | \(\dfrac{5}{2}\) | \(\dfrac{9}{2}\) |
Vậy \(n\in\left\{\dfrac{-7}{2};\dfrac{-3}{2};\dfrac{-1}{2};0;1;\dfrac{3}{2};\dfrac{5}{2};\dfrac{9}{2}\right\}\)
Bạn Nguyen Thi Huyen giải bài 1 rồi nên mình giải tiếp các bài kia nhé!
Bài 2:
\(\dfrac{x-18}{2000}+\dfrac{x-17}{2001}=\dfrac{x-16}{2002}+\dfrac{x-15}{2003}\)
\(\Leftrightarrow\left(\dfrac{x-18}{2000}-1\right)+\left(\dfrac{x-17}{2001}-1\right)=\left(\dfrac{x-16}{2002}-1\right)+\left(\dfrac{x-15}{2003}-1\right)\)
\(\Leftrightarrow\dfrac{x-2018}{2000}+\dfrac{x-2018}{2001}=\dfrac{x-2018}{2002}+\dfrac{x-2018}{2003}\)
\(\Leftrightarrow\dfrac{x-2018}{2000}+\dfrac{x-2018}{2001}-\dfrac{x-2018}{2002}-\dfrac{x-2018}{2003}=0\)
\(\Leftrightarrow\left(x-2018\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
Dễ thấy \(\dfrac{1}{2000}>\dfrac{1}{2001}>\dfrac{1}{2002}>\dfrac{1}{2003}\) nên:
\(\dfrac{1}{2000}+\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}\ne0\). Do đó:
\(x-2018=0\Leftrightarrow x=2018\)
Bài 3:
a) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\Leftrightarrow\dfrac{20}{4x}+\dfrac{xy}{4x}=\dfrac{20+xy}{4x+4x}=\dfrac{20+xy}{8x}=\dfrac{1}{8}\)
Hoán vị ngoại tỉ ta có: \(\dfrac{20+xy}{8x}=\dfrac{1}{8}\Leftrightarrow\dfrac{8}{8x}=\dfrac{1}{x}=\dfrac{1}{8}\Leftrightarrow x=8\)
Thế x = 8 vào : \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\) .Ta có: \(\dfrac{5}{8}+\dfrac{y}{4}=\dfrac{1}{8}\Leftrightarrow\dfrac{y}{4}=\dfrac{1}{8}-\dfrac{5}{8}=\dfrac{-2}{4}\). Ta có: \(\dfrac{y}{4}=\dfrac{-2}{4}\Leftrightarrow y=-2\)
Vậy: \(\left[{}\begin{matrix}x=8\\y=-2\end{matrix}\right.\)
b) \(\dfrac{1}{x}-\dfrac{2}{y}=\dfrac{3}{1}\Rightarrow\dfrac{y}{x}-2=\dfrac{3}{1}\) (hoán vị ngoại tỉ)
\(\Leftrightarrow\dfrac{y}{x}=\dfrac{5}{1}\). Suy ra nghiệm x,y có dạng \(\left[{}\begin{matrix}x=1k\\y=5k\end{matrix}\right.\left(k\in Z\right)\). Bằng các phép thử lại ta dễ dàng suy ra x,y vô nghiệm.
\(S_n=1-\dfrac{1}{n^2}\) xét tổng \(U_n=\dfrac{1}{n^2}\) với n >=2
cơ bản có \(\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}=\dfrac{1}{n-1}-\dfrac{1}{n}\)
<=>\(U< 1-\dfrac{1}{n-1}\)
cơ bản có \(\dfrac{1}{n^2}>\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
<=>\(U>1-\dfrac{1}{n+1}\)
<=>\(1-\dfrac{1}{n-1}< U< 1-\dfrac{1}{n+1}\)
với n >2 => 1/(n-1) ; 1/(n+1) là hai phân số <1
=> U không phải là số nguyên
=> S không là số nguyên => dpcm
vế phải đâu