Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi chữ số tận cùng của 7n là:a
ta có:7n+4=7n.74=(...a).2401=...a
=>đpcm
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
Dễ thấy các số trên là bình phương các số tự nhiên liên tiếp.
Mà các số chính phương đều không tận cùng bằng 2, 3, 7 và 8
Nên chúng chỉ tận cùng bằng 0 ,1 , 4 , 5 , 6 và 9
Xét từng trường hợp nếu chọn các bộ số tận cùng của các số trên được {1,4,5,6} ; {1;4;5;9}; {1;4;6;9} ; {1;5;6;9} và các hoán vị của các bộ số này. Nhận thấy tổng của các phần tử trong mỗi bộ số đều không tận cùng bằng 7
Vậy có điều phải chứng minh
Dễ thấy các số trên là bình phương các số tự nhiên liên tiếp.
Mà các số chính phương đều không tận cùng bằng 2, 3, 7 và 8
Nên chúng chỉ tận cùng bằng 0 ,1 , 4 , 5 , 6 và 9
Xét từng trường hợp nếu chọn các bộ số tận cùng của các số trên được {1,4,5,6} ; {1;4;5;9}; {1;4;6;9} ; {1;5;6;9} và các hoán vị của các bộ số này. Nhận thấy tổng của các phần tử trong mỗi bộ số đều không tận cùng bằng 7
Vậy có điều phải chứng minh
không như nhau đâu, có 2 số 0;5 sao mà như nhau được ,(55=3125 ;105=100000)
Coi chữ số tận cùng của n là h
Với n lẻ :
\(n^5=n^4.n=\left(...1\right).n=\left(..1\right)\left(...a\right)=\left(...a\right)\)
Tương tự với n chẵn :
\(n^5=n^4.n=\left(...6\right).n=\left(..6\right)\left(...a\right)=\left(...a\right)\)
Vậy ...
Không hiểu nổi @trần thùy dung CTV viết cái gì nữa:
\(A=n^5-n\)
A chia hết cho 5 với mọi n thuộc N (*)
\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)=> A chia hết cho 2 (**)
(*)&(**)=> A chia hết cho 10=> A tận cùng là 0 vậy n^5 và n có số tận cùng = nhau=> dpcm
p/s: (*) nếu cần có thể c/m nhưng nó thuộc t/c do vậy ko cần c/m nữa
xét từng chữ số tận cùng của n
VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1
Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2
Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3
........
Theo mình là như thế
xét từng chữ số tận cùng của n
VD Với n có tận cùng là 1 thì n^5 có tận cùng là 1
Với n có tận cùng là 2 thì n^4 có tận cùng là 6.Suy ra n^5 có tận cùng là 2
Với n có tận cùng là 3 thìn^4 có tận cùng là 1.Suy ra n^5 có tận cùng là 3
........
Tự tìm nha
gọi chữ số tận cùng của 7\(^n\) là:a
Ta có:7\(^{n+4}\)=7\(n\) .7\(^4\)=﴾...a﴿.2401=...a (đpcm)
2 chữ số tận cùng mà bn