K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2019

Gọi d là 1 ước chung của 4n + 2 và 6n + 1. Ta có :

4n + 2 :: d ; 6n + 1 :: d

=> 3( 4n + 2 ) - 2( 6n + 1 ) :: d

=> 12n + 6 - 12n + 2 :: d

=> 4 :: d => d thuộc { -4 ; -2 ; -1 ; 1 ; 2 ; 4 }

Mà 6n + 1 là số lẻ => n thuộc { -1; 1 } ( nguyên tố )

Vậy 4n + 2 và 6n + 1 nguyên tố cùng nhau ( đpcm )

22 tháng 12 2017

Gọi  (3n + 1; 4n + 1) = d

Ta có:  3n + 1 \(⋮d\)

            4n + 1 \(⋮d\)

Xét hiệu:  4(3n + 1) - 3(4n + 1) \(⋮d\)

\(\Leftrightarrow\)12n + 4 - 12n - 3  \(⋮d\)

\(\Leftrightarrow\)1  \(⋮d\)   \(\Leftrightarrow\)d = 1

Vậy   3n + 1  và  4n + 1   là 2 số nguyên tố cùng nhau  \(\forall n\) \(\in N\)\(\ne0\))

22 tháng 12 2017

Gọi ƯCLN(3n + 1, 4n + 1) = d ( d thuộc N, d khác 0 )

=> 3n + 1 chia hết cho d; 4n + 1 chia hết cho d

=> (3n + 1) . 4 chia hết cho d; (4n+1) . 3 chia hết cho d

=> 12n + 4 chia hết cho d; 12n + 3 chia hết cho d

=>[ (12n + 4 ) - ( 12n + 3 ) ] chia hết cho d

=> 1 chia hết cho d

=>d thuộc Ư(1)

=> d = 1

Vậy với mọi n thuộc N và n khác 0 thì 3n + 1; 4n + 1 nguyên tố cùng nhau

7 tháng 12 2018

Mình đang cần gấp

7 tháng 12 2018

gọi ƯCLN(4n+1;n+1) =d

Ta có:\(\hept{\begin{cases}4n+1⋮d\\n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+1⋮d\\4\left(n+1\right)⋮d\end{cases}}\)

\(\Rightarrow4\left(n+1\right)-4n-1⋮d\)

\(\Rightarrow3⋮d\)\(\Rightarrow d\in\left\{1;3\right\}\)

VÌ 4n+1 và n+1 khác tính chẵn lẻ

=> d=1

Vậy 4n+1 và n+1 là 2 số nguyên tố cùng nhau vs mọi STN n (đpcm)

26 tháng 11 2018

a) Gọi ƯCLN(4n+1;6n+1) = d

=>\(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\)=>\(\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}\)

<=> 12n + 3 - 12n -2 \(⋮\)d

<=> 3 - 2  \(⋮\)d  (trừ 12n)

<=> d = 1

Vậy ƯCLN(4n+1;6n+1) = 1 hay với mọi số tự nhiên n thì 4n+1 và 6n+1 là hai số nguyên tố cùng nhau

b) Gọi ƯCLN(5n+4;6n+5) = d

=>\(\hept{\begin{cases}5n+4⋮d\\6n+5⋮d\end{cases}}\)=>\(\hept{\begin{cases}6\left(5n+4\right)⋮d\\5\left(6n+5\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}30n+24⋮d\\30n+25⋮d\end{cases}}\)

<=>30n + 25 - 30n + 24 \(⋮\)d

<=>25 - 24 \(⋮\)(bỏ đi 30n)

<=> d = 1

Vậy ƯCLN(5n+4;6n+5) = 1 hay 5n + 4 và 6n + 5 là 2 số nguyên tố cùng nhau

16 tháng 9 2023

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.

7 tháng 1 2016

Gọi ƯCLN(2n+3,4n+8)là d

Ta có :

      2n+3 chia hết cho d

suy ra 4n+6 chia hết cho d

suy ra : (4n+8)-(4n+6)chia hết cho d 

suy ra : 2 chia hết cho d

suy ra d thuộc Ư(2)

Ư(2)=1,2

Vì 2n+3 chia hết cho d,mà 3 lẻ,suy ra d lẻ

suy ra d=1

vậy ƯCLN(2n+3,4n+8)=d=1

vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau

tick nhé

23 tháng 11 2015

gọi d>0 là ước dung của 2n+1 và 6n+5

d là ước số 3(2n+1)=6n+3

(6n+5)_(6n+3)=2

suy ra d là ước của số lẻ :2n+1 suy ra d=1

vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau

**** nhé Thanh Lộc thông minh

21 tháng 12 2017

Gọi \(d\)là ước chung lớn nhất của 2n+1 và 6n+4(\(d\in\)N*)

Khi đó \(\hept{\begin{cases}2n+1⋮d\\6n+4⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3\cdot\left(2n+1\right)⋮d\\6n+4⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

\(\Leftrightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Leftrightarrow1⋮d\Rightarrow d=1\)(Vì \(d\in\)N*)

\(\Rightarrowđpcm\)

25 tháng 3 2021

amazing goodjob

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)